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Abstract

Giving up and starting over may seem wasteful in many situations such as searching
for a target or training deep neural networks (DNNs). Our study, though, demon-
strates that resetting from a checkpoint can significantly improve generalization
performance when training DNNs with noisy labels. In the presence of noisy
labels, DNNs initially learn the general patterns of the data but then gradually
memorize the corrupted data, leading to overfitting. By deconstructing the dy-
namics of stochastic gradient descent (SGD), we identify the behavior of a latent
gradient bias induced by noisy labels, which harms generalization. To mitigate
this negative effect, we apply the stochastic resetting method to SGD, inspired
by recent developments in the field of statistical physics achieving efficient target
searches. We first theoretically identify the conditions where resetting becomes
beneficial, and then we empirically validate our theory, confirming the significant
improvements achieved by resetting. We further demonstrate that our method is
both easy to implement and compatible with other methods for handling noisy
labels. Additionally, this work offers insights into the learning dynamics of DNNs
from an interpretability perspective, expanding the potential to analyze training
methods through the lens of statistical physics.

1 Introduction

When we explore a search space having complex choices of training schemes or search for appropriate
hyperparameters of deep neural networks (DNNs), we often meet circumstances that cause us to
give up and train the network all over again. This is akin to our experiences in daily life, where we
face various tasks that require solving problems through hit-and-miss. For example, when trying to
find a beloved one’s face in a crowd, our eyes typically flick back to a certain starting point after
scanning the surrounding area. Similarly, when searching for a misplaced wallet after a big night out,
we often fail to locate it and restart our search from some original location. These patterns are also
frequently observed in animal behavior, such as foraging for food and returning to familiar locations
such as nests or dens. In these situations, one might think that revisiting places is a waste of time and
resources, potentially diminishing search performance. However, recent developments in statistical
physics have proven that resetting to the start or a mid-point can improve the performance of the
search process, meaning that this strategy is not so haphazard after all.

This effect of resetting from a particular configuration has been extensively investigated in the field
of statistical physics in recent years [1, 2]. These investigations typically involve a blind searcher
who evolves their current state stochastically over time without knowledge of the target’s location.
Surprisingly, it has been found that resetting does not hinder the search process but rather can make
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Figure 1: (a) Schematic of stochastic gradient descent (SGD) dynamics with stochastic resetting.
The network parameter vector θ evolves via SGD to find an optimal value θ∗ on the training risk
landscapeRD̃tr

(upper colormap), which differs from the true risk landscapeRD (lower colormap)
due to corrupted data. Here, θ resets to the checkpoint θc (home icon) with the reset probability r
and resets to θc. (b) Fraction of correctly predicted data with wrong labels during training with SGD
(gray) and SGD with reset (green). The inset shows the validation losses during training.

the searcher more efficient across diverse conditions, including scenarios with high dimensions or the
presence of external forces [3–11]. Capitalizing on the success of the resetting strategy, numerous
algorithms incorporating this approach have begun to emerge in diverse fields such as molecular
dynamics simulations [12, 13] and queuing systems [14].

In parallel, statistical physics has emerged as a valuable framework for understanding the nature
of DNNs, offering insights that are both explainable and interpretable [15, 16]. Several techniques
rooted in statistical physics, such as spin-glass theories [17, 18] and analytical tools for stochastic
systems [19, 20], have been recently applied to advance the understanding of DNNs. Yet it remains
unclear how statistical physics, in addition to its ability to analyze the learning process of DNNs,
can be effectively utilized to enhance their performance, especially in practical scenarios including
low-quality datasets.

In this work, we propose applying the stochastic resetting strategy to supervised learning with noisy
labels and show that it can prevent overfitting to corrupted data (also called the memorization effect).
During network training, our method resets the model parameters to a checkpoint with a certain
probability and restarts the training process [Fig. 1(a)]. By mapping the stochastic gradient descent
(SGD) dynamics to the corresponding Langevin dynamics, we explore in-depth to understand the
mechanisms and conditions by which resetting can help SGD find the optimal parameters. Our main
contributions are summarized as follows.

• We reveal a latent gradient bias in the SGD dynamics induced by noisy labels, which drives
the memorization effect in DNNs. Based on this finding, we apply the stochastic resetting
method to counteract this effect and explain its core beneficial mechanism (Sec. 3).

• We analyze the key factors for applying the stochastic resetting method. First, we discuss
the means of selecting preferable checkpoints to reset to. Then, both theoretically and
empirically, we find that the improvements of resetting increase as the stochasticity of the
SGD dynamics and the proportion of corrupted training data increase (Sec. 4.1, 4.2).

• We show that the resetting method can be seamlessly integrated into existing approaches
and consistently improves generalization performance across several standard benchmark
datasets, including those incorporating real-world noise (Sec. 4.4).

2 Related Works

2.1 Search processes and stochastic resetting in statistical physics

Search processes are ubiquitous across various domains, spanning from systems in nature to ap-
plications in engineering. For instance, ligands exhibit search processes as they navigate toward
target binding sites within proteins [21–23], and similarly, predators employ search strategies to
locate their prey in the wild [24, 25]. In engineering, search processes are relevant to finding primary
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research studies [26], ranking web pages [27], and determining optimal hyperparameters for training
algorithms [28]. Although diverse search strategies are employed depending on the problem at hand,
they share a common goal: to identify an efficient search protocol. Efficiency is typically assessed by
the time required to reach a target, referred to as the first passage time (FPT) in the context of random
walk literature [29]. Numerous search strategies have been investigated to achieve this goal, including
the Lévy strategies [30, 31], self-avoiding walks [32, 33], intermittent strategies [34], persistent
random walks [35], and more [36]. One recent strategy that has garnered attention is stochastic
resetting, with studies showcasing its ability to enhance search performance by revisiting previous
places [2, 7, 37, 10]. In particular, these studies have demonstrated that stochastic restarts prevent a
random searcher from wandering too far, thereby ensuring a finite mean time to find a target, whereas
the mean time is infinite for a diffusive particle without resetting. Drawing from this concept, we
introduce a resetting method for training DNNs and illustrate its effectiveness in addressing the noisy
label problem.

2.2 Deep learning from noisy labels

While the accessibility of large datasets has propelled remarkable advancements in DNNs, the pres-
ence of noisy labels within these datasets often leads to erroneous model prediction [38]. Specifically,
DNNs tend to overfit the entire corrupted training dataset by memorizing the wrong labels, which
degenerates their generalization performance on a test dataset. Numerous studies have been conducted
to address this overfitting phenomenon [39–44], and it has been revealed that DNNs initially learn the
clean data (general patterns) during an early learning stage and then gradually memorize the corrupted
data (task-specific patterns) [45–47]. The overfitting issue stemming from the memorization effect
can be seen in Fig. 1(b), where the model’s accuracy in predicting the true labels of the data with noisy
labels exhibits an inverted U-shaped curve as the model progressively memorizes the noise. Based
on this understanding, the surprising effectiveness of the early-stopping method [48] in alleviating
the memorization effect becomes evident; as such, various methods have been proposed to leverage
this insight, including Co-teaching [49], SELFIE [50], early learning regularization (ELR) [51], and
robust early learning [52]. Our proposed method also capitalizes on this insight by enabling the DNN
to reset to a checkpoint, i.e., previously visited parameters during early learning stages, and implicitly
serves as a regularization mechanism by indirectly affecting the SGD dynamics. Additionally, our
theoretical analysis explores how label noise affects the performance of DNNs from the perspective
of optimization strategies, such as those discussed in Refs. [48, 47]. We adopt a different approach
based on statistical physics, assuming more practical settings, which offers novel insights and leads to
the development of our method. In Sec. 3, we provide a detailed analysis identifying a latent gradient
bias of SGD due to label noise that causes the memorization effect, and how stochastic resetting can
mitigate such negative effects.

3 Methodology

In this section, we first investigate the SGD dynamics in the presence of label noise and identify the
latent gradient bias that leads to memorizing corrupted labels. We then introduce how stochastic re-
setting can be incorporated into SGD and demonstrate how this improves generalization performance
by approximating SGD dynamics into Langevin dynamics.

Problem setup. Consider a c-class classification problem, which is a supervised learning task aimed
at training a function to map input features to labels through a DNN. Let X ⊂ Rp be the feature
space, Y = {0, 1}c be the label space in one-hot vector form, and fθ : X → Y be a DNN model
where θ ∈ Rd encompasses all trainable parameters in the DNN. The goal is to find an optimal
θ∗ such that fθ∗ accurately assigns labels to corresponding input features, given an unknown joint
probability distribution PD over X × Y [Fig. 1(a)]. To obtain this, a training algorithm is applied to
minimize the risk RD(θ) ≡ ⟨L (x,y;θ)⟩D during training, where L denotes a loss function (e.g.,
cross-entropy loss). Here, L (x,y;θ) denotes the loss for a sample (x,y) from PD with a given
model fθ, and ⟨·⟩D denotes the average over PD. In a typical classification problem, the DNN is
trained by minimizing the risk on the training dataset Dtr via SGD and θ∗ is selected at the minimum
risk on the validation dataset Dval to mitigate overfitting on Dtr, where Dtr(val) = {(xi,yi)}

Ntr(val)

i=1

and each (xi,yi) is sampled from PD. Empirically, the risk on the training (validation) dataset is
computed as RDtr(val)

(θ) =
(
1/Ntr(val)

)∑Ntr(val)

i=1 L (xi,yi;θ). In the presence of noisy labels,
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Figure 2: (a) Schematic of −∇θRD̃tr
(θ), decomposed by two orthogonal terms −∇θR̂D̃c

tr
(θ)

and −∇θR̂D̃w
tr
(θ). (b) Cosine similarity between −∇θRD̃tr

(θ) and −∇θR̂D̃w
tr
(θ) (cosϕtw; red),

and between −∇θRD̃c
tr
(θ) and −∇θR̂D̃w

tr
(θ) (grey), throughout all training iterations for varying

noise rate τ . (c) Magnitude difference between the two vectors ∥∇θR̂D̃w
tr
(θ)∥ − ∥∇θR̂D̃c

tr
(θ)∥

throughout all training iterations for varying τ . Here, we set the batch size to B = 8 in Setting 1
described in Sec. 4. Darker colors represent larger values of τ in (b, c).

suppose we have a corrupted training dataset D̃tr = {(xi, ỹi)}Ntr
i=1, where ỹ is a noisy label that may

be corrupted from a ground truth label yi, and (xi, ỹi) is sampled from the corrupted distribution
PD̃. This corrupted dataset can be partitioned into two subsets, i.e., D̃tr ≡ [D̃c

tr, D̃w
tr], where D̃c

tr

(D̃w
tr) consists of N c

tr (Nw
tr ) samples with correct (wrong) labels. Note that N c

tr = (1 − τ)Ntr and
Nw

tr = τNtr for an unknown noise rate τ ∈ [0, 1].

3.1 Latent gradient bias in SGD by label noise

When we apply the minibatch SGD to minimize the empirical risk RDtr
(θ) with respect to θ, the

update rules of θ at each training iteration t can be represented by

∆θt = −
η

B

∑
(xi,yi)∈Bt

∇θLi(θt)

= − η

Ntr

∑
(xi,yi)∈Dtr

∇θLi(θt) +

 η

Ntr

∑
(xi,yi)∈Dtr

∇θLi(θt)−
η

B

∑
(xi,yi)∈Bt

∇θLi(θt)

 ,

(1)
where θt is θ at the t-th iteration, ∆θt ≡ θt+1 − θt, and Li(θt) ≡ L(xi,yi;θt) for simplicity.
Here, η > 0 is the learning rate and Bt is the minibatch of size B consisting of independent and
identically distributed (i.i.d.) samples from Dtr. While the first term on the right-hand-side (RHS) is
deterministic for a given Dtr, the second term on the RHS is stochastic due to the randomly sampled
batch at each iteration. Thus, Eq. (1) can be rewritten as

∆θt = −∇θRDtr
(θt)η + ξt

√
η, (2)

where a random noise vector ξt ≡
√
η (∇θRDtr

(θt)−∇θRBt
(θt)) ∈ Rd satisfies ⟨ξt⟩Dtr

=

0 and ⟨ξtξTs ⟩Dtr
= 2D(θt)δts with D(θt) ≡ ηΣ(θt)/(2B), where δij denotes the Kronecker

delta (see details in the Supplementary Materials (SM) and Refs. [53–55]). In terms of Langevin
dynamics,RDtr

(θ) and D(θ) correspond to the potential and diffusion matrix, respectively, where
the former generates the deterministic long-term trend called drift and the latter determines the level
of stochasticity of the system [56]. As a result, the SGD dynamics of θt can be understood by the
Langevin dynamics of a d-dimensional particle diffusing with drift −∇θRDtr

(θt) and diffusion
matrix D(θt).

For a corrupted dataset D̃tr, the equation of SGD dynamics remains analogous to Eq. (2) when we
substitute Dtr with D̃tr. Then we can divide the drift vector −∇θRD̃tr

(θt) into two components,
one originating from D̃c

tr and the other from D̃w
tr as follows [Fig. 2(a)]:

∆θt = −
[
∇θR̂D̃c

tr
(θt) +∇θR̂D̃w

tr
(θt)

]
η + ξt

√
η, (3)

4



with the gradients from the correct part ∇θR̂D̃c
tr
(θt) ≡ (1 − τ)∇θRD̃c

tr
(θt) and the gradi-

ents from the wrong part ∇θR̂D̃w
tr
(θt) ≡ τ∇θRD̃w

tr
(θt). We refer to the drift from the wrong

part −∇θR̂D̃w
tr
(θt) as the latent gradient bias by label noise. Note that ⟨∇θRD̃c

tr
(θt)⟩D =

⟨∇θRDtr
(θt)⟩D, implying that −∇θR̂D̃c

tr
(θt) reflects the gradients toward the true optimum, while

−∇θR̂D̃w
tr
(θt) reflects the gradients toward the false optimum by memorizing the noisy labels. Ad-

ditionally, we observe that −∇θR̂D̃c
tr
(θt) and −∇θR̂D̃w

tr
(θt) are orthogonal to each other [Fig. 2(b)

and Fig. S.1 in the SM], leading to −∇θRD̃tr
(θt) being represented by the sum of two orthogonal

vectors. Thus, −∇θRD̃tr
(θt) becomes more correlated with −∇θR̂D̃w

tr
(θt) as the noise rate τ

increases. Figure 2(b) and (c) illustrate that −∇θR̂D̃w
tr
(θt) becomes increasingly dominant so that

the drift gradually tilts toward wrong directions as τ increases, where cosϕtw denotes the cosine
similarity between −∇θR̂D̃c

tr
(θt) and −∇θR̂D̃w

tr
(θt), and ∥ · ∥ denotes the Euclidean norm of a

vector. This gradually tilting trend toward a wrong direction can also be observed with respect to
iteration t, implying that −∇θR̂D̃w

tr
(θt) becomes increasingly dominant as the learning process

progresses beyond an early learning phase [51]. Therefore, in the presence of noisy labels, we can
see that the latent gradient bias emerges and hinders the search for the optimal parameters θ∗.

We note that a similar analysis of the SGD dynamics using statistical physics was previously per-
formed in Ref. [47]. While both studies observed an increasing trend in the effect of latent gradient
bias during the learning process, their findings on the cosine similarity between drift components,
cosϕcw, differ from ours. To address this discrepancy, we conducted additional experiments and
identified the contributing factors, as detailed in Sec. D.2 of the SM.

3.2 Stochastic resetting method

We now describe how the stochastic resetting method can be integrated into SGD. Based on this, we
establish the specific premises of this work. Let θc be a reset checkpoint and r be the reset probability
at each iteration t, where a checkpoint refers to previously visited model parameters during training.
By incorporating the resetting method, Eq. (2) for D̃tr can be expressed as

θt+1 =

{
θc, with probability r,

θt −∇θRD̃tr
(θt)η + ξt

√
η, otherwise, Eq. (3).

(4)

Below we provide the pseudo-code for SGD with stochastic resetting, Algorithm 1. Our implementa-
tion is publicly available at https://github.com/qodudrud/stochastic-resetting.

The SGD dynamics with stochastic resetting involves two processes: resetting from a checkpoint θc
with probability r [top of Eq. (4)], and maintaining the SGD dynamics with probability 1− r [bottom
of Eq. (4)]. Note that Eq. (4) shares the same form as the (overdamped) Langevin equation with
Poissonian reset [3], and also that training DNNs to find optimal parameters can be likened to a search
process for an unknown target. These parallels imply that similar advantages of stochastic resetting
may arise in the training process of DNNs as in the random search process of Langevin dynamics.

Algorithm 1 Stochastic resetting

Require: Corrupted training set D̃tr, validation set Dval, reset probability r, threshold T .
1: Initialize θ0 and set t = 0, θc = None, and θbest = None
2: for t = 0 to T do
3: Update θt ← θt− η

B

∑
(xi,yi)∈Bt

∇θLi(θt) where Bt is a randomly sampled batch from D̃tr

4: if θc ̸= None and rand(0, 1) < r then
5: Restart θt ← θc
6: end if
7: θbest ← Valid(θt,Dval) where Valid(θt,Dval) checks whetherRDval

(θt) is the minimum.
8: if θbest remains unchanged for T iterations or θt = θbest then
9: Set the checkpoint θc ← θbest

10: end if
11: end for

5
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Figure 3: The mean first passage time (MFPT) ⟨T (γ)⟩ from Eq. (5) with varying (a) diffusion
coefficient D and (b) drift v with respect to the reset rate γ. Markers represent the minimum MFPT,
⟨T (γ∗)⟩, at the optimal reset rate γ∗. We set v = 1 in (a), D = 1 in (b), and L = 1 in both.

To examine this hypothesis, we first explore the beneficial mechanism of stochastic resetting in the
search process with a simplified case.

The search efficiency of a random search process is typically quantified by the mean first passage
time (MFPT) [29], which represents the average time to find a target. It has been well-established that
incorporating stochastic resetting can significantly reduce the MFPT in various complex scenarios,
including high-dimensional spaces [1], various confining potentials [57, 7], and a searcher with
momentum [6, 58], among others [2]. For a simplified case, let us consider a random searcher in one
dimension with diffusion coefficient D, drift v, and reset rate γ (≡ r/∆t with a time interval ∆t
between steps), and assume that the searcher starts at the origin (reset point). Then the MFPT for a
target located at L (> 0) can be expressed by

⟨T (γ)⟩ = 1

γ

[
e

L
2D

(√
v2+4Dγ−v

)
− 1

]
, (5)

where ⟨T (γ)⟩ denotes the MFPT with the reset rate γ (see the derivation in Sec. B of the SM).
Examining Eq. (5) provides several insights into the effects of stochastic resetting. When the random
searcher either normally diffuses or drifts away from the target (v ≤ 0 ), it is straightforward that
⟨T (γ)⟩ diverges as γ → 0 but becomes finite for any γ > 0. Conversely, when the searcher drifts
toward the target (v > 0), while ⟨T (γ)⟩ is finite as L/v without resetting, introducing stochastic
resetting can significantly reduce ⟨T (γ)⟩ within a certain range of γ, provided the following condition
is met:

Pe ≡ Lv

2D
≤ 1. (6)

Here, Pe is known as the Péclet number, which quantifies the ratio between drift and diffusive transport
rates, and the beneficial condition (Pe ≤ 1) can be identified by verifying where [d⟨T (γ)⟩/dγ]|γ→0 <
0. Figure 3 illustrates how the behavior of ⟨T (γ)⟩ evolves with varying Pe: as Pe decreases, the
initially monotonically increasing curve gradually transforms into a U-shaped curve, achieving
a minimum ⟨T (γ)⟩ at the optimal reset rate γ∗ > 0. These findings indicate that resetting is
advantageous for a target search when the stochasticity (D) is sufficiently larger than the drift toward
a target (v). Furthermore, we note that both the optimal reset rate γ∗ and the improvement ratio
⟨T (0)⟩/⟨T (γ∗)⟩ increase as Pe decreases (Fig. 3), indicating that the benefits of resetting grow as D
increases and v decreases.

According to the above observations, the beneficial properties of resetting in a random search process
can be summarized as follows:

When the stochasticity is sufficiently larger than the drift toward a target, resetting can be
beneficial for random searches and there exists an optimal reset probability.

The advantageous mechanism of resetting in a random search process is to suppress trajectories that
move away from the target, thus increasing the chances of finding it. Drawing a parallel between the
random search process and the training procedure of DNNs via SGD, we hypothesize this mechanism
is also applicable to the noisy label problem in DNNs. Specifically, in supervised learning with
noisy labels, the stochasticity of the SGD dynamics increases as batch size B decreases, and the drift
component toward a target −∇θR̂D̃c

tr
(θt) weakens (i.e., the latent gradient bias strengthens) as the
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noise rate τ increases. Therefore, the boxed statement suggests that the resetting strategy would be
beneficial for searching for optimal parameters in cases with a small batch size and large noise rate in
the presence of noisy labels. In Sec. 4, we perform several experiments and empirically show that
stochastic resetting enhances generalization performance.

4 Experiments

This section presents the experimental results that support our theory. We perform image classification
tasks with noisy labels in the following settings.

Setting 1 (Sec. 4.1, 4.2, and 4.3). To examine the impact of stochastic resetting on the noisy label
problem, we first utilize a small dataset called ciFAIR-10 [59], a variant of CIFAR-10 [60]. We employ
a vanilla convolutional neural network (VCNN, see Sec. C.1 in the SM) to facilitate straightforward
testing of our claims. Training is performed using cross-entropy loss, an SGD optimizer with a fixed
learning rate of 10−2, and threshold T = 1000 iterations for the stochastic resetting method. A clean
validation set, Dval, is used to select the best model and monitor the validation loss during training.

Setting 2 (Sec. 4.4). We assess the generalization performance of our method on two benchmark
datasets, CIFAR-10 and CIFAR-100 [60], as well as its compatibility with various existing methods.
The model architecture used is ResNet-34 [61], trained with SGD using a momentum of 0.9 and
threshold T = 5000 iterations for the stochastic resetting method as default. Additional details for
the choice of hyperparameters are provided in Sec. C.2 of the SM. To demonstrate the efficacy of our
method, we compare test accuracy with and without resetting. Note that the optimizer and learning
rate scheduler do not restart throughout this experiment. To consider practical situations, a corrupted
validation set, D̃val, is used for model selection and validation loss monitoring during training.

Setting 3 (Sec. 4.5). Under the same parameter conditions as Setting 2, we evaluate the performance
of the stochastic resetting method on real-world noisy datasets, beyond the synthetic noise scenarios
in Settings 1 and 2. Specifically, we use CIFAR-10N/100N, which are controllable, easy-to-use,
and moderately sized real-world noisy datasets designed to enable fair comparisons across different
benchmarks within accessible computational resources [62]. These datasets contain real-world human
annotation errors obtained from Amazon Mechanical Turk. Additionally, we test on ANIMAL-10N,
a dataset created by web-crawling image pairs of visually similar animals (e.g., cat and lynx, jaguar
and cheetah) [50], to further examine its effectiveness across diverse real-world datasets.

In Settings 1 and 2, we apply symmetric noise with a noise rate τ , where each label in c classes is
randomly flipped to an incorrect label in other classes with equal probability τ/(c− 1). Note that
all results are obtained from the model at the optimal iteration based on minimum validation loss as
default, and also that the resulting test accuracy is evaluated on the clean validation set, i.e., the test
dataset Dte is set to Dval.

We use the relative difference in validation loss (RDVLoss) and the relative difference in test accuracy
(RDTAcc.) as metrics to indicate the relative improvement compared to the baseline. This metric
enables effective comparison of the performance difference between stochastic resetting and original
training. These metrics are calculated by [v(r) − vbase]/vbase, where v(r) is the resulting value
with the reset probability r and vbase is the baseline value obtained from the original training
(vbase = v(0)). The unnormalized results can be found in Sec. D.4 of the SM. We repeated our
experiments five times across all settings to report the average and standard error values.

4.1 Which checkpoint would be preferable to reset to?

To introduce the resetting strategy in DNN training, we first explore which checkpoint is suitable to
reset to in order to find optimal parameters. A straightforward choice is to select the parameters at the
overfitting iteration tm. Here, the overfitting iteration tm refers to an iteration where the validation
loss ceases to decrease and begins to increase due to the memorization effect [inset of Fig. 1(b)].
The checkpoint at tm, denoted by θm, has the minimum validation loss during training when the
double descent phenomenon does not occur [63], and is typically employed as an early-stopping point.
Instead of early stopping and considering θm as the final model, we utilize θm as the checkpoint θc
to reset to (Algorithm 1), leading to significantly improved results [Fig. 4(a)]. Here, θc is initially
set to θm and adaptively changes to the parameter at a newly found minimum validation loss during
training. As can be seen in Fig. 4(a), resetting suppresses the trajectory of θ to be near θc, which
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Figure 4: (a) Test accuracies of the SGD (gray) and the SGD with our resetting method (green) during
training. The inset shows the validation losses. (b,c) Relative difference of validation loss (RDVLoss)
with varying the checkpoint to reset to with respect to the reset probability r. In (b), based on the
checkpoint at the overfitting iteration tm, RDVLoss is obtained in earlier iterations (left) and later
iterations than tm (right). tm + δt denotes the iteration where the checkpoint is selected. In (c),
RDVLoss is plotted with the perturbed checkpoint parameters θc,ϵ ≡ θc + ϵn̂, where θc denotes the
checkpoint and n̂ denotes a random unit vector. The shaded areas denote the standard error.

successfully prevents memorizing the noisy labels and increases the chance to find more appropriate
parameters. It is important to note that the reset probability r controls the degree of suppression and
the results at r = 0 and r = 1 are almost the same due to the overfitting phenomenon (the case of
r = 1 corresponds to the early-stopping method). Therefore, the resulting RDVLoss curve for r
should be U-shaped, indicating that an optimal r exists to optimize the performance.

While we simply select θm as the initial θc and adaptively update it, one may ask what effect the
choice of θc has. To check this, we experiment with a fixed checkpoint both earlier and later than
θm. For earlier checkpoints [left panel in Fig. 4(b)], the improvement over resetting from θm slightly
decreases and the value of the optimal r gets smaller as the checkpoint gets earlier. In contrast, for
later checkpoints [right panel in Fig. 4(b)], the improvement over resetting from θm significantly
decreases as the checkpoint gets later. These results support our understanding of the beneficial
mechanism of resetting in increasing the chance of finding better parameters, because the chance
would decrease as the model memorizes more noise. Therefore, we can conclude that resetting in
early learning stages is a good choice: the more memorization occurs, the smaller the improvement.

We additionally experiment to verify how the effect of resetting changes with the distance between
the (adaptive) checkpoint θc at the minimum validation loss and a perturbed checkpoint θc,ϵ. Here,
we set the perturbed checkpoint by adding the perturbation ϵn̂ into θc with varying the perturbation
magnitude ϵ, where n̂ ≡ n/∥n∥ ∈ Rd is a random unit vector with a standard normal random vector
n. As shown in Fig. 4(c), it is observed that the benefits of resetting decrease as the distance between
the checkpoint to reset to and θm increases. This result also supports that while resetting can improve
the generalization performance, the choice of checkpoint to reset to can affect the performance, and
that the minimum validation loss point is a good choice.

4.2 Impact of stochasticity and drift on stochastic resetting

As the statement highlighted in Sec. 3.2 clarifies, it has been proven in the statistical physics field
that the resetting strategy can improve search efficiency as the stochasticity becomes larger than the
drift component toward a target. In this section, we verify whether this statement is also valid in the
training of DNNs and show under what circumstances resetting is more effective than not resetting.

It is first important to note that the stochasticity and the drift toward a target, i.e., −∇θR̂D̃c
tr

, can be
controlled by the batch size B and the noise rate τ , respectively, as illustrated in Sec. 3.1. Particularly,
D(θt) ∝ 1/B and ∇θR̂D̃c

tr
(θt) ∝ 1 − τ , meaning that the stochasticity increases and the drift

toward a target decreases as B decreases and τ increases, respectively. We quantitatively examine
the RDVLoss and the RDTAcc. values with varying B and τ with respect to the reset probability r.
Remarkably, the improvements of RDVLoss and RDTAcc. with resetting become more significant as
B decreases [Fig. 5(a)] and τ increases [Fig. 5(b)]. These observations strongly support our claim
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Figure 5: Relative difference of validation loss (RDVLoss, left) and relative difference of test accuracy
(RDTAcc., right) results with (a) varying the batch size B, and (b) varying the noise rate τ with
respect to the reset probability r. We set τ = 0.4 in (a) and B = 16 in (b). The shaded areas denote
the standard error.

that stochastic resetting offers more benefits as the stochasticity increases and the drift toward a target
decreases.

Moreover, we expect that the optimal reset probability r∗ decreases as B decreases and τ increases,
but this can only be verified qualitatively because the fluctuation of the results makes it difficult to
identify r∗.

4.3 Ablation study on partial resetting

Until now, we have leveraged the memorization effect in our algorithm by utilizing the parameters at
the minimum validation loss as the checkpoint for resetting the entire network, a process referred to
as full resetting. However, several studies have highlighted that different layers within a DNN exhibit
varied learning behaviors, leading to distinct levels of overfitting across these layers [64, 65]. A
prevailing explanation for this phenomenon suggests that gradients tend to weaken as they propagate
from the latter layers (closer to the output layer) to the former layers (closer to the input layer).

Here, we experiment on which layers, former or latter, play a more dominant role in improving
performance with the resetting method. For this, we introduce partial resetting, which involves
resetting only one section of the network layers rather than the entire network, while the remaining
section of layers continues to follow the standard SGD update rule without resetting. We divide
the VCNN structure into former and latter sections, comprising convolutional and linear layers,
respectively, and apply partial resetting to one section. Interestingly, our experiments reveal that
partial resetting of the latter section can further enhance generalization performance compared to full
resetting, whereas partial resetting of the former section does not yield improvements over the case
with no resetting (r = 0) (Fig. 6).

Figure 6: Relative difference of validation loss
(RDVLoss) and relative difference of test accuracy
(RDTAcc.) results with varying one section of the
network to reset with respect to the reset probabil-
ity r. We set τ = 0.4 and B = 16. The shaded
areas denote the standard error.

Moreover, even when we freeze the latter section
by setting r = 1, partial resetting of the latter
section still achieves significant improvement.
We attribute these findings to a well-established
observation: the former layers of CNNs tend
to learn general features, while the latter lay-
ers tend to specialize in capturing specific fea-
tures [66–69, 64]. In other words, the latter sec-
tion composed of linear layers exhibits strong
memorization of the corrupted data, leading to
improved performances even when we freeze
the latter section (r = 1), whereas the former
section composed of convolutional layers fo-
cuses on learning general features, leading to no
improvements even with resetting.

It is essential to note that although our ablation
study suggests the effectiveness of partial reset-
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Table 1: Test accuracies (%) on test datasets with different methods. We compare the performance
without resetting (No) and with resetting (Reset) at r = 0.001. Results are presented as the average
and the standard deviation. The best results are indicated in bold with statistical significance.

Dataset Method Noise rate τ = 0.2 Noise rate τ = 0.4 Noise rate τ = 0.6
No Reset No Reset No Reset

CIFAR-10

CE 84.8± 0.4 90.0± 0.5∗∗∗ 80.8± 0.7 86.3± 0.7∗∗∗ 72.9± 0.7 79.5± 0.9∗∗∗

Part — 88.5± 0.4∗∗∗ — 83.7± 0.9∗∗∗ — 75.1± 0.4∗∗∗

MAE 91.0± 0.2 91.0± 0.2 85.6± 3.3 85.9± 3.3 67.1± 6.8 67.3± 6.7
GCE 90.6± 0.1 91.0± 0.2∗ 85.3± 0.4 87.1± 0.3∗∗∗ 76.2± 0.5 79.1± 0.8∗∗∗

SL 91.3± 0.3 91.4± 0.1 86.6± 0.2 87.9± 0.2∗∗∗ 80.1± 0.5 81.6± 0.6∗∗

ELR* 91.2± 0.1 91.3± 0.2 88.8± 0.2 88.9± 0.2 84.6± 0.5 84.6± 0.5
SOP+* 94.1± 0.2 94.1± 0.2 89.9± 0.3 89.9± 0.3 85.0± 0.3 85.1± 0.3

CIFAR-100

CE 62.7± 5.6 64.5± 1.5 45.6± 2.3 56.9± 3.0∗∗∗ 32.9± 1.6 44.1± 3.1∗∗∗

Part — 64.0± 0.9 — 55.5± 2.1∗∗∗ — 43.5± 1.5∗∗∗

MAE 19.9± 2.8 19.9± 2.8 11.0± 3.8 10.8± 3.7 6.7± 1.2 6.8± 1.3
GCE 68.3± 0.4 69.3± 0.2∗∗ 61.2± 0.6 63.2± 0.3∗∗∗ 50.1± 0.6 53.1± 0.8∗∗∗

SL 66.8± 0.5 68.6± 0.6∗∗∗ 60.4± 0.5 63.1± 0.7∗∗∗ 50.4± 0.8 54.1± 0.8∗∗∗

ELR* 67.4± 0.3 70.4± 0.3∗∗∗ 55.1± 0.6 64.1± 0.6∗∗∗ 45.9± 0.7 54.0± 1.0∗∗∗

SOP+* 72.1± 0.3 72.1± 0.3 59.4± 0.5 65.7± 0.9∗∗∗ 48.4± 1.9 54.8± 2.3∗∗

ting, our findings do not imply that partial resetting of the latter section always enhances generalization
performance compared to full resetting. The extent to which each layer overfits the corrupted data
depends on multiple factors, such as the network structure and the choice of loss function. Thus,
determining the most effective section of the network to reset also hinges on the specific context.
Future research investigating these points would be intriguing and valuable.

4.4 Results on corrupted benchmark datasets

In Setting 2, we investigate the impact of the stochastic resetting strategy on the performance of
benchmark datasets, CIFAR-10 and CIFAR-100, under symmetric noise corruption using various
methods. Table 1 compares the best results without resetting (No) and with resetting (Reset) at
the reset probability r = 0.001. In the table, CE denotes cross-entropy loss, PartRestart denotes
cross-entropy loss with partial resetting of only the last linear layer and the last two blocks of
ResNet-34 (Sec. 4.3), MAE denotes robust mean absolute error [70], GCE denotes generalized
cross-entropy [71], SL denotes symmetric cross-entropy loss [72], ELR denotes early-learning
regularization [51], and SOP+ denotes sparse over-parameterization with consistency regularization
and class-balance regularization [73]. ELR and SOP+ are representative methods to robustly train
DNNs with an additional regularization term to prevent overfitting to corrupted data. However, these
methods require additional hyperparameters to be fine-tuned depending on the loss landscape (e.g.,
dataset, model architecture), and in practical scenarios, it is often costly to find the optimal settings of
these methods. In this section, we consider both optimal and non-optimal hyperparameter settings
to take such practical situations into account, where we use an asterisk (*) to denote a non-optimal
hyperparameter setting (i.e., ELR*, SOP+*). We provide additional details about the hyperparameters
for each method in Sec. C.2 of the SM.

Remarkably, in all cases examined, our resetting method consistently achieves either at least equivalent
or higher test accuracies compared to the baseline approach involving no resetting (Table 1). Results
show that the extent of improvement becomes more pronounced as the noise rate increases, which
supports our claim that resetting becomes more advantageous with higher noise rates. Furthermore,
while the PartRestart method also obtains improved performance, it does not surpass the benefits of
full resetting. We conjecture that the network structure may influence the extent of the additional
improvements obtained, as the memorization effect in different layers can vary depending on the
network architecture [74]. Minimal improvements are observed in the MAE results for both datasets;
this is primarily because the MAE convergence is too slow to identify a suitable checkpoint for
resetting, consequently resulting in few instances of resetting in many trials. For ELR and SOP+, no
significant improvements are found in the performance when stochastic resetting is used with the
known optimal hyperparameter settings, as shown in Table S.4 in the SM. However, for ELR* and
SOP+*, incorporating the stochastic resetting method leads to either at least equivalent performance
or significant improvements compared to no resetting. This can be explained by the design of ELR
and SOP+ that provide regularization terms to prevent memorization, akin to reducing the effect of the
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Table 2: Test accuracies (%) on test datasets with real-world datasets CIFAR-10N/100N. We compare
the performance without resetting (No) and with resetting (Reset) at r = 0.001. Results are presented
as the average and the standard deviation. The best results are indicated in bold with statistical
significance.

Method
CIFAR-10N CIFAR-10N CIFAR-10N CIFAR-100N

Random 1 (τ ∼ 0.09) Aggregate (τ ∼ 0.17) Worst (τ ∼ 0.4) Noisy (τ ∼ 0.4)
No Reset No Reset No Reset No Reset

CE 82.8± 0.5 87.8± 0.7∗∗∗ 86.1± 0.6 90.2± 0.3∗∗∗ 73.8± 1.9 79.7± 0.3∗∗∗ 46.7± 1.6 56.0± 1.3∗∗∗

MAE 90.9± 0.3 90.9± 0.2 90.0± 0.5 90.0± 0.5 60.2± 3.6 60.2± 3.6 4.0± 1.3 4.0± 1.3
SL 91.7± 0.2 91.8± 0.2 89.6± 0.2 89.9± 0.4 80.6± 0.5 81.3± 0.8 52.3± 0.5 56.5± 0.6∗∗∗

GCE 91.7± 0.2 91.9± 0.2 89.4± 0.4 89.8± 0.7 78.1± 0.9 82.3± 0.5∗∗∗ 55.8± 0.5 58.0± 1.2∗∗∗

ELR* 89.5± 0.3 89.5± 0.3 91.3± 0.2 91.3± 0.2 81.9± 0.4 81.9± 0.5 56.9± 0.4 60.5± 0.5∗∗∗

SOP+* 91.2± 0.2 91.2± 0.2 93.2± 0.1 93.0± 0.1 82.4± 0.5 82.3± 0.7 57.0± 0.4 61.2± 0.9∗∗∗

ViT-Trd 63.2± 0.9 65.7± 0.7∗∗∗ 61.0± 0.9 63.6± 0.3∗∗∗ 55.4± 0.2 57.2± 0.2∗∗ 28.6± 0.5 32.8± 0.5∗∗∗

ViT-Tpt 92.6± 0.3 93.6± 0.6∗ 91.8± 0.5 93.0± 0.8∗∗ 85.9± 1.4 87.4± 0.7∗ 63.8± 1.1 68.6± 0.5∗∗

latent gradient bias. These results indicate that stochastic resetting is compatible with well-established
methods, and can also provide at least equal performance compared to the methods without resetting.

We likewise demonstrate the effectiveness of the stochastic resetting method in asymmetric (i.e.,
class-dependent) noise scenarios (Table S.5 in the SM), and we also verify the improvement of the
validation loss when using our stochastic resetting method (Table S.6 in the SM).

4.5 Results on real-world noisy datasets

Table 3: Test accuracies (%) on test datasets with
real-world datasets ANIMAL-10N. We compare
the performance without resetting (No) and with
resetting (Reset) at r = 0.001.

Dataset No Reset
ANIMAL-10N 80.6± 0.6 85.1± 0.4∗∗∗

Finally, we test our stochastic resetting method
on real-world noisy datasets, namely CIFAR-
10N/100N (Setting 3). There are five differ-
ent noise types for CIFAR-10N, namely Rand1,
Rand2, Rand3, Aggregate, and Worst with a
noise rate of 9.03%, 17.23%, 18.12%, 17.64%,
and 40.21%, respectively, and a single noise type
for CIFAR-100N with a noise rate of 40.20%.
For CIFAR-10N, we selected Rand1, Aggregate, and Worst noise types to account for various real-
world noise rates. We further evaluate our method on ANIMAL-10N with the default setting of
Setting 3 using cross-entropy loss. For the ANIMAL-10N dataset, there is only a single noise type
while the ground-truth labels remain unknown. The noise rate τ was estimated as τ ∼ 0.08 using
cross-validation with a grid search and τ ∼ 0.06 based on human inspection, respectively.

Table 2 presents the performance results without resetting (No) and with resetting (Reset) at the reset
probability r = 0.001 for CIFAR-10N/100N. Similarly, the results for ANIMAL-10N are shown
in Table 3. We provide additional details about the hyperparameters in Sec. C.2 of the SM. For the
case of CIFAR-10N, the stochastic resetting method consistently achieves either at least equivalent or
higher test accuracies compared to the baseline without resetting, similar to the results in Sec. 4.4
(Table 1). While the experiments on CIFAR-10N show some cases with minimal improvements
from the stochastic resetting method, the results on CIFAR-100N and ANIMAL-10N provide strong
evidence of the advantages of applying stochastic resetting in practical scenarios. These results
demonstrate that the stochastic resetting method can provide significant improvements while acting
as a safeguard to maintain baseline performance.

Furthermore, to assess the applicability of our method beyond CNN-based approaches, we evaluate
it on the Vision Transformer (ViT) [75]. As shown in Table 2, the resetting method consistently
improves performance on ViT, denoted by ViT-Trd and ViT-Tpt, which correspond to ViT-Tiny
models [76] trained from randomly initialized and pre-trained weights, respectively. Previous studies
have reported that ViTs without pre-training are more prone to overfitting, particularly in the presence
of label noise [77, 78], which we also observe in Table 1. Interestingly, regardless of initialization,
the resetting method results in significant performance improvements, highlighting its potential for a
broader range of recent architectures and scenarios.
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5 Discussion

In this work, we identified a latent gradient bias that hinders SGD from generalizing in the presence
of label noise. To address this, we developed a stochastic resetting method, motivated by the
success of the resetting strategy in statistical physics. By analyzing SGD dynamics through the
lens of Langevin dynamics, we theoretically identified factors that influence the effectiveness of
resetting, i.e., batch size and noise rate, and then experimentally confirmed the impact of these
factors. Experiments showed that the resetting method consistently yields equivalent or improved
performance on benchmark datasets compared to existing methods.

As our method can be implemented with minimal code changes and without additional computational
costs, flexibility and ease of integration with other approaches are ensured. This simplicity also
facilitates extensions to other variants, such as non-Poissonian resetting [79, 80] and state-dependent
reset probability [3, 81], etc. [2]. In particular, as illustrated by the U-shaped curves in Figs. 3–5,
resetting can excessively constrain the target search of the SGD dynamics for sufficiently large values
of r, which can degrade training efficiency. To address this, introducing occasional larger, more
dynamic jumps (e.g., those inspired by Lèvy strategies and intermittent search strategies [34]) or
adjusting the reset probability based on recent performance (e.g., decreasing the reset probability
when no improvement is observed over time) can enhance the performance of our method while
mitigating the risk of getting stuck. Moreover, while we evaluated DNN models up to ResNet-34,
we confirmed that the computational overhead, including I/O operations associated with resetting,
is negligible compared to the overall training time. This makes our method scalable effectively to
large-scale models, as further discussed in Sec. D.8 of the SM.

The main limitation of this work is that the proposed method may not be as effective when the double
descent phenomenon occurs or the convergence of validation loss is too late, such as the MAE case
in Table 1. Moreover, it is challenging to identify the optimal reset probability from a limited number
of experiments. In fact, it has been observed that the coefficient of variation of the FPT is unity at the
optimal reset probability in a random search problem [82, 83]. Future work investigating whether
a similar relationship exists in DNN training may help to identify the optimal reset probability in
practice.

We note that the resetting method shares a similar spirit with forgetting, which refers to the loss
of previously acquired knowledge [84]. Similar to resetting, forgetting was initially viewed as
a catastrophic phenomenon that needed to be addressed [85, 86]; however, recent studies have
highlighted its benefits, leading to its use in improving network performance [87, 88]. From this
perspective, resetting can be viewed as a form of forgetting memorized task-specific patterns, but
unlike general forgetting that primarily erases early experiences, resetting targets the erasure of later
experiences. It will be interesting to further explore the connections between resetting and forgetting
in future discussions.

We anticipate that our work can influence two different research directions. First, it opens up the
possibility of analyzing existing training methods from a statistical physics perspective, and second,
it can pave the way to applying various new search strategies, beyond resetting, into neural network
training.
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A SGD dynamics and Langevin dynamics

A.1 Derivation of Eq. (2)

We explain how the dynamics of SGD can be converted to the discretized Langevin equation. We
follow similar procedures as in Refs. [53–55]. As written in the main text, the network parameters θ
are updated by

∆θt = −
η

B

∑
(xi,yi)∈Bt

∇θLi(θt)

= − η

Ntr

∑
(xi,yi)∈Dtr

∇θLi(θt) +

 η

Ntr

∑
(xi,yi)∈Dtr

∇θLi(θt)−
η

B

∑
(xi,yi)∈Bt

∇θLi(θt)


= −∇θRDtr

(θt)η + ξt
√
η,

(S.1)
where the random noise vector is ξt ≡

√
η (∇θRDtr(θt)−∇θRBt(θt)) ∈ Rd, ∇θRDtr(θt) is

the gradient of risk on Dtr, and ∇θRBt(θt) is the gradient of risk on a minibatch Bt. Note that
⟨∇θLi(θt)⟩Dtr = ∇θRDtr(θt) and ⟨RBt(θt)⟩Dtr = RDtr(θt). Using these facts, we can obtain
that ⟨ξt⟩Dtr

= 0 and

⟨ξtξTs ⟩Dtr
= η

〈
(∇θRDtr

(θt)−∇θRBt
(θt)) (∇θRDtr

(θs)−∇θRBs
(θs))

T
〉
Dtr

= η
(〈

∇θRBt
(θt)∇θRBs

(θs)
T
〉
Dtr
−∇θRDtr

(θt)∇θRDtr
(θs)

T
)
.

(S.2)

For the s ̸= t case,
〈
∇θRBt(θt)∇θRBs(θs)

T
〉
Dtr

= ∇θRDtr(θt)∇θRDtr(θs)
T because

each minibatch is independently sampled from Dtr. Applying ⟨∇θLi(θt)∇θLj(θt)⟩Dtr
=

∥∇θRDtr
(θt)∥2 + Σ(θt)δij with the covariance matrix Σ(θt), where ∥ · ∥ denotes the Euclidean

norm of a vector, we have〈
∥∇θRBt

(θt)∥2
〉
Dtr

= ∥∇θRDtr
(θt)∥2 +

1

B
Σ(θt). (S.3)

Therefore, we obtain ⟨ξtξTs ⟩Dtr
= 2D(θt)δts with D(θt) = ηΣ(θt)/(2B). We assumed Ntr ≫ B

in the above derivation, but the decreasing trend of D(θt) with B is still valid for Ntr ≥ B [55]. The
noise covariance matrix D is typically state-dependent and highly anisotropic, which contributes
to the heavy-tailed and nonequilibrium stationary distribution of the SGD dynamics [89, 90]. In
addition, it has been shown that D is positively correlated with the Hessian matrix of the loss [91, 92],
indicating that the noise strength is greater in directions where the loss landscape is sharper. This
relationship suggests that SGD prefers flat minima over sharp minima [93, 19].

Let us consider the overdamped Langevin equation, a first-order stochastic differential equation
describing the evolution of a particle where friction dominates over inertia. Applying the Euler
method, the overdamped Langevin equation can be approximated with time interval ∆t by [56]

∆xt = −∇xV (xt)∆t+
√

2B(xt)∆Wt. (S.4)

Here, xt is the position of the particle at time step t, V (xt) is the underlying potential, B(xt) is the
strength of the fluctuations, called the diffusion matrix, and ∆Wt is the random noise vector that
satisfies ⟨∆Wt⟩ = 0 and ⟨∆Wt∆WT

s ⟩ = ∆tδts, where ⟨·⟩ denotes the ensemble average. When
we simulate Eq. (S.4), we randomly sample the random real number ζt from a certain probability
distribution with zero-mean and unit-variance at each iteration t and represent the noise vector as
∆Wt ≡ ζt

√
∆t. Note that ∆Wt is commonly assumed as an increment of the Wiener process based

on the central limit theorem, so that ζt is generally sampled from the standard normal distribution.
This assumption is often violated in various situations [94], and ζt can be sampled from other
distributions depending on the system. Comparing Eq. (S.1) with Eq. (S.4), we can easily see that
the dynamics of SGD follows the overdamped Langevin equation, withRDtr and D serving as the
potential and the diffusion matrix, respectively. Based on this correspondence, we analyze the SGD
dynamics in the language of the Langevin dynamics and apply the stochastic resetting strategy in the
main text.
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A.2 SGD dynamics for noisy small dataset

In Sec. 3, we derived that latent gradient bias arises caused by label noise hinders the SGD dynamics
from reaching the optimal parameters. While the main text primarily focuses on the impact of label
noise, other factors can similarly degrade the training of DNNs. One such factor is the limited size
of the training dataset. To investigate how dataset size affects DNN training, we recall the equation
governing SGD dynamics with label noise [Eq. (3) in the main text]:

∆θt = −
[
∇θR̂D̃c

tr
(θt) +∇θR̂D̃w

tr
(θt)

]
η + ξt

√
η, (S.5)

with the label noise rate 0 ≤ τ ≤ 1 is defined, the gradients from the correct part ∇θR̂D̃c
tr
(θt) ≡

(1 − τ)∇θRD̃c
tr
(θt), and the gradients from the wrong part ∇θR̂D̃w

tr
(θt) ≡ τ∇θRD̃w

tr
(θt). For a

sufficiently large training dataset Dtr, ∇θRD̃c
tr
(θt) closely approximates the gradients of the true

risk, denoted by ∇θRD(θt). However, when Dtr is small, a discrepancy between them emerges due
to the small dataset size, which can be expressed by

∇θR̂D̃c
sm
(θt) = ∇θR̂D̃c

tr
(θt)−∇θR̂D(θt), (S.6)

with ∇θR̂D(θt) ≡ (1− τ)∇θRD(θt). Substituting Eq. (S.6) into Eq. (S.5) yields:

∆θt = −∇θR̂D(θt)η −∇θR̂D̃c
sm
(θt)η −∇θR̂D̃w

tr
(θt)η + ξt

√
η. (S.7)

Here, the first term in the right-hand-side of Eq. (S.7) represents the drift toward the true optimum,
the second term represents the bias caused by the small dataset size, and the third term represents the
bias introduced by label noise. Thus, we can identify that latent gradient bias arises from either a
small dataset size or label noise, both of which hinder the generalization ability of DNN. Notably,
for a large Dtr, the second term ∇θR̂D̃c

sm
(θt) diminishes, leading to ∇θR̂D(θt) ≃ ∇θR̂D̃c

tr
(θt).

On the other hand, for τ = 0 case, the third term ∇θR̂D̃w
tr
(θt) disappears, and the first and second

terms dominate. Conversely, for τ = 1, the third term persists, and the first and second terms vanish.
These results suggest that the label noise rate influences the relative magnitudes of the drift terms,
whereas the dataset size affects the direction of the drift by determining how effectively the correct
labels within the dataset guide the model toward the true optimum. Our analysis mainly centers
on the effects of label noise, but exploring the individual and combined impacts of ∇θR̂D̃c

sm
(θt)

on DNN training would be an intriguing direction for future work. Furthermore, the substantial
improvements achieved by restarting with a small noisy dataset, as demonstrated in Secs. 4.1–3,
highlight the efficacy of our method in this challenging regime.

B Stochastic resetting in statistical physics

We briefly introduce what stochastic resetting is and the conditions under which this strategy can help
random searches (see Ref. [2] for a more detailed review). In fact, the resetting method has already
been exploited in some stochastic algorithms [95–97], but much attention has been attracted by the
theoretical success of stochastic resetting [1]. Several approaches have been made to deal with search
processes involving resets, such as calculating the survival probability [1, 5]. Here, we present an
easy but general one, and clarify that we follow the same procedure as in Refs. [82, 83, 7].

Let us consider a generic searcher that starts from a resetting point at time zero in a d-dimensional
space, with the assumption that the searcher resets at a rate of γ if the target is not found. In other
words, the search process is completed when the searcher finds the target before resetting; otherwise,
the searcher returns to the resetting point and repeats this procedure until the target is found. This
procedure can be understood in terms of two random variables, T and R, which represent the time to
find a target and the time to reset, respectively. If we draw T and R from their respective distributions,
we check whether T > R. If T > R, the searcher resets before finding the target, and the search
process begins anew from the resetting point. Conversely, if T < R, the searcher finds the target
before resetting, and the search process is completed. Applying this scheme, the time to find a target,
known as the first passage time (FPT) and denoted by T (γ), can be expressed by the following
renewal equation:

T (γ) =

{
T, if T < R,

R+ T (γ)′, if R ≤ T ,
(S.8)
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or equivalently,
T (γ) = min(T,R) + I(R ≤ T )T (γ)′, (S.9)

where T (γ)′ denotes an independent and identically distributed copy of T (γ), and I(R ≤ T ) denotes
an indicator function which equals one if R ≤ T and zero otherwise. Note that T (γ) = T if there is
no reset (γ = 0). Taking expectations in Eq. (S.9), we obtain the mean first passage time (MFPT):

⟨T (γ)⟩ = ⟨min(T,R)⟩
Pr(T < R)

, (S.10)

with the relations ⟨I(R ≤ T )⟩ = Pr(R ≤ T ) and ⟨T (γ)⟩ = ⟨T (γ)′⟩. It is noteworthy that we do not
assume the dynamics of the search process and the function of the reset rate. Thus, Eq. (S.10) can be
applied to a general search process regardless of the distributions of T and R.

As a simple reset method, we assume a constant reset rate, i.e., the reset probability within a time
interval dt is γdt [1]. Then, the distribution of R is exponential with γe−γt at time t and ⟨min(T,R)⟩
can be calculated by

⟨min(T,R)⟩ =
∫ ∞

0

dt [1− Pr(min(T,R) ≤ t)]

=

∫ ∞

0

dt Pr(R > t)Pr(T > t)

=

∫ ∞

0

dt e−rt

∫ ∞

t

dt′fT (t
′) =

1

r
− 1

r

∫ ∞

0

dt e−rtfT (t).

(S.11)

In addition, Pr(T < R) =
∫∞
0

dt fT (t)Pr(R > t) =
∫∞
0

dt e−rtfT (t). Substituting these
equations into Eq. (S.10), we obtain

⟨T (γ)⟩ = 1− T̃ (γ)

γT̃ (γ)
(S.12)

where T̃ (γ) ≡
∫∞
0

dte−γtfT (t) denotes the Laplace transform of T evaluated at γ. Note that
fT (t) is determined by the underlying dynamics of the searcher, which may include factors such as
stochasticity or external drift. Therefore, once the dynamics of a searcher are determined and fT (t)
is known, we can calculate the MFPT at γ and identify whether resetting is beneficial.

To obtain the MFPT with resetting, let us specify the dynamics of a searcher. Consider a searcher
diffusing in one dimension with a diffusion constant D and a constant drift v and assume that the
searcher starts at the origin (reset point) and that the target we want to find is located at L (> 0).
Here, D represents the stochasticity and v represents the drift toward a target. The position x(t) of
the searcher at time t evolves during a small time interval ∆t through the Langevin equation given by

x(t+∆t) =

{
xr, with probability γ∆t,

x(t) + v∆t+ ξ(t)
√
∆t, otherwise,

(S.13)

where xr denotes the reset point set as the origin and ξ(t) denotes a stochastic force, typically
modeled Gaussian white noise satisfying ⟨ξ(t)⟩ = 0 and ⟨ξ(t)ξ(s)⟩ = 2Dδ(t − s). In this search
process, the probability distribution to find the searcher at position x at time t is known to be given
by [56]

G0(x, t) =
1√
4πDt

[
e−

(x−vt)2

4Dt − e
Lv
D e−

(x−2L−vt)2

4Dt

]
. (S.14)

The FPT distribution fT (t) is then derived from the probability that the searcher has not yet reached
the target by time t: fT (t) = d

dtPr(T ≥ t) = d
dt

∫ L

−∞ dxG0(x, t). Using this equation and the

definition of T̃ (γ), we find T̃ (γ) = 1− γ
∫ L

−∞ dx G̃0(x, γ) where G̃0(x, γ) ≡
∫∞
0

dte−γtG0(x, t)

is the Laplace transform of G0(x, t) evaluated at γ. Thus, upon calculation with these equations and
Eq. (S.14), we obtain

T̃ (γ) = e
L
2D

(
v−
√

v2+4Dγ
)
. (S.15)

Substituting Eq. (S.15) into Eq. (S.12), we finally have

⟨T (γ)⟩ = 1

γ

[
e

L
2D

(√
v2+4Dγ−v

)
− 1

]
. (S.16)
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This final expression gives the MFPT for a searcher with drift and diffusion, including the effect of
resetting at a rate γ.

In our paper, we exploit the correspondence between SGD dynamics and Langevin dynamics, as
described in Sec. A, and theoretically identify where stochasticity is strengthened and drift toward a
target is weakened in DNN training. Although we demonstrated a simple one-dimensional case in
this section, numerous studies have explored more complex scenarios, including various confining
potentials [57, 7], and related contexts. [2]. Importantly, it has been proven that a diffusive particle
with resetting converges to a nonequilibrium steady state even in arbitrary spatial dimensions, and it
has also been shown to be beneficial for target search [3, 4]. We believe these findings support the
hypothesis that resetting may provide advantages in the search process involved in SGD dynamics
for DNN. However, we also acknowledge that the advantages of resetting in terms of MFPT are not
directly connected to performance improvements in DNN training. We conjecture and empirically
validate that similar beneficial mechanisms successfully operate in DNN training. Nonetheless, it
would be necessary and intriguing to find an alternative metric to represent the DNN performance
and to theoretically investigate the effect of resetting.

C Description of the experiments

This section provides details on the experiments not included in the main text. For all of the
experiments, we perform 5 independent runs to achieve the average and the standard error values. All
runs were made independently on a single NVIDIA TITAN V GPU. All results are obtained from
the model at the optimal iteration based on minimum validation loss as default, except ELR and
SOP+ methods. Additionally, the resulting test accuracy is evaluated on the clean validation set. The
objective throughout our experiments is to compare the performance with and without resetting, not
to achieve state-of-the-art performances; therefore, we did not heavily tune the hyperparameters for
each of the settings. Here we provide the choice of hyperparameters for our experiments.

C.1 Network architecture

We employed a vanilla CNN (VCNN) as mentioned in Secs. 4.1, 4.2, and 4.3 to expedite a straight-
forward testing of our claims. It consists of simple layers, as outlined in Table S.1. In the table, the
inclusion of batch normalization before the activation function and after a layer is indicated by the
term "Use BatchNorm". The output dimension of a convolutional layer is represented as (C,W,H),
where C denotes the number of channels, and W and H represent the width and height, respectively.
Additionally, c represents the number of classes in the dataset.

Table S.1: Network architecture of the VCNN: Layer name, output dimension of the layer, parameters
of the convolutional layer (K,P, S), and activation function. Here, K, P , and S represent the size of
the filter, padding, and stride, respectively.

Layer name Output dim. (K,P, S) Use BatchNorm Activation function
Input image (3, 32, 32) None X None

Conv2d (32, 32, 32) (3, 1, 1) O ReLU
Conv2d (64, 32, 32) (3, 1, 1) O ReLU

MaxPool2d (64, 16, 16) (2, 0, 2) O None
Conv2d (128, 16, 16) (3, 1, 1) O ReLU
Conv2d (128, 16, 16) (3, 1, 1) O ReLU

MaxPool2d (128, 8, 8) (2, 0, 2) X None
Conv2d (256, 8, 8) (3, 1, 1) O ReLU
Conv2d (256, 8, 8) (3, 1, 1) O ReLU

MaxPool2d (256, 4, 4) (2, 0, 2) X None
Dropout (p = 0.2) 256× 4× 4 None X None

Linear 1024 None O ReLU
Linear 512 None O ReLU
Linear c None X Softmax
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C.2 Experimental setting for results on benchmark datasets in Secs. 4.4 and 4.5

We set the hyperparameters required for each baseline method in Secs. 4.4 and 4.5 following Table S.2,
as specified in their original papers.

Table S.2: Hyperparameters for baseline methods used in Secs. 4.4 and 4.5.

Method Dataset
CIFAR-10/10N CIFAR-100/100N

GCE [71] (q, k) = (0.7, 0) (q, k) = (0.7, 0)
SL [72] (α, β) = (0.1, 1.0) (α, β) = (6.0, 0.1)

ELR [51] λ = 3 λ = 7
ELR* λ = 0.5 λ = 1

SOP+[73] (αu, αv) = (10, 10) (αu, αv) = (1, 10)
SOP+* (αu, αv) = (1, 1) (αu, αv) = (0.1, 1)

We confirm that all results for methods without our proposed approach are consistent with the
performance reported in their original papers. We set the batch size to 256, momentum to 0.9,
and weight decay to 5× 10−4 for the cross-entropy loss, MAE, GCE, and SL methods (for SL on
CIFAR-100, the batch size is set to 128). For the ELR and SOP methods, we set the batch size to 128,
momentum to 0.9, and weight decay to 10−3, following Ref. [51, 73]. We employ a cosine annealing
scheduler [98], setting the maximum number of iterations to the total iteration 5× 104 with an initial
learning rate of 0.1 for the cross-entropy loss and 0.01 for MAE [70], GCE, and SL methods. For the
ELR and SOP+ methods, we set the initial learning rate as 0.02, and reduce it by 1/100 and 1/10,
respectively, after 40 (80) and 80 (120) with a total epoch 150 on CIFAR-10 (CIFAR-100) as indicated
in Ref. [51, 73]. Additional regularizer parameters for SOP+ and SOP+* are (λC , λB) = (0.9, 0.1).
Moreover, for the ELR and SOP+ methods, we set the reset checkpoint and select the best model
based on validation accuracy instead of validation loss due to the discrepancy in the resulting test
accuracies between these accuracy-based and loss-based approaches in the baseline. The threshold
T is set to 30 epochs on ELR and SOP+. Especially in SOP+, our method starts after 80 epochs on
CIFAR-100 (Table 1).

When testing on ViT [75], we use the ViT-Tiny (ViT-T) model from the Hugging Face timm li-
brary [76]. The model uses a patch size of 16, an embedding dimension of 192, a depth of 12, and
3 attention heads, with an input image size of 224. For training ViT-T, we use cross-entropy loss
and SGD with a momentum of 0.9 and no weight decay. The batch size is set to 256, and the initial
learning rate is 0.01. We employ a cosine annealing scheduler with the maximum number of iterations
to 5× 104. For ANIMAL-10N, we followed the default setting of cross-entropy loss, modifying only
the batch size to 128.

23



D Additional results

D.1 Cosine similarities between drifts in Sec. 3

We provide the cosine similarities between drift components, i.e., −∇θRD̃tr
(θ) (total drift),

−∇θR̂D̃c
tr
(θ) (drift from the correct part), and −∇θR̂D̃w

tr
(θ) (drift from the wrong part, i.e., latent

gradient bias by label noise) by varying the noise rate in Fig. S.1. The shaded gray area represents the
iteration region before the stochastic resetting takes place, and the white area represents the iteration
region after the resetting commences. Note that the stochastic resetting does not directly change the
gradient itself, as can be seen by comparing the top row (no reset) in Fig. S.1(a, b, c) and the bottom
row (with reset) in Fig. S.1(d, e, f). Instead, stochastic resetting suppresses trajectories of DNNs that
drift away from the optimum, thereby increasing the chances of finding it despite the presence of latent
gradient bias. Here, we can see that the cosine similarity between−∇θR̂D̃c

tr
(θt) and−∇θR̂D̃w

tr
(θt),

denoted by cosϕcw, is almost zero, indicating that −∇θR̂D̃c
tr
(θt) and −∇θR̂D̃w

tr
(θt) are most

likely to be orthogonal to each other (see the further discussion in Sec. D.2). In addition, the cosine
similarity between−∇θRD̃tr

(θt) and−∇θR̂D̃c
tr
(θt), denoted by cosϕtc, decreases with increasing

τ , implying that −∇θRD̃tr
(θt) becomes less correlated with −∇θR̂D̃c

tr
(θt). These results support

our claims in Sec. 3 and the schematic in Fig. 2(a).

b ca

e fd

Figure S.1: Cosine similarities between −∇θRD̃tr
(θ) (total drift), −∇θR̂D̃c

tr
(θ) (drift from the

correct label, i.e., correct drift), and −∇θR̂D̃w
tr
(θ) (drift from the wrong label, i.e., wrong drift). The

first row (a, b, c) shows the cosine similarities when there is no reset, r = 0, and the second row (d, e,
f) shows the cosine similarities when resetting is applied, r = 0.01, with (a, d) a noise rate of τ = 0.2,
(b, e) τ = 0.4, and (c, f) τ = 0.6. Here, cosϕtc, cosϕtw, and cosϕcw denote the cosine similarity
between total and correct drifts, total and wrong drifts, and correct and wrong drifts, respectively.
The gray region represents the iterations before the resetting commences. We set B = 8 in Setting 1
and performed 5 independent runs, where the shaded areas denote the standard error.
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D.2 Orthogonality between the drift components

We further explore the orthogonality of −∇θR̂D̃c
tr
(θt) and −∇θR̂D̃w

tr
(θt). In contrast to our results,

Ref. [47] demonstrated that cosϕcw varies significantly during training and can be used as an order
parameter to divide the learning phases. To investigate the factors contributing to this discrepancy,
we perform additional experiments with DNNs of comparable sizes and settings to those used in
Ref. [47], as detailed in Table S.3. Note that for the fully connected network (FCN) structures,
the case with dl = 50 number of hidden units matches the configuration used in Ref. [47]. A key
difference in our setup is the use of batch normalization [99], which we hypothesize may play a
significant role in the observed effects. Interestingly, as shown in Fig. S.2, we observe that batch
normalization enforces orthogonality between two drift components during training in both CNN
and FCN structures. Moreover, this orthogonality in the presence of batch normalization becomes
more pronounced as the number of hidden units dl increases, implying that the dimensionality
of network parameters also affects the orthogonality [Fig. S.2(b,c)]. These observations are in a
similar line as findings from Ref. [100], which reported that batch normalization in DNNs induces
orthogonalization of hidden representations of samples across layers. As batch normalization is one
of the most widely adopted techniques for improving training in DNNs, our findings suggest that
the orthogonality between the drift components is likely to generalize across diverse DNN structures
and experimental settings. Exploring the mechanisms by which batch normalization enforces this
orthogonality would be an intriguing direction for future research, complementing theoretical studies
on batch normalization, such as those in Refs. [101, 100, 102].

b ca

Figure S.2: Cosine similarities between −∇θR̂D̃c
tr
(θ) and −∇θR̂D̃w

tr
(θ), denoted by cosϕcw,

during training with (w/) and without (w/o) batch normalization (BN) for (a) CNN and (b) FCN
structures. (c) cosϕcw by varying the number of hidden units dl in the FCN structure with batch
normalization. We set B = 8 in Setting 1 and performed 5 independent runs, where the shaded areas
denote the standard error. Additionally, we perform a moving average with a time window of 50
log-iterations to smooth the recorded values of cosϕcw, which are measured every 20 iterations.

Table S.3: Network architectures of (top) CNN and (bottom) FCN used in Sec. D.2. Here, dl
represents the number of hidden units of the FCN structure. Batch normalization, when applied, is
placed before the activation function, except for the output layer.

CNN
Layer name Output dim. (K,P, S) Activation function
Input image (3, 32, 32) None None

Conv2d (8, 32, 32) (3, 1, 1) ReLU
Conv2d (8, 32, 32) (3, 1, 1) ReLU

MaxPool2d (8, 16, 16) (2, 0, 2) None
Dropout (p = 0.2) 8× 16× 16 None None

Linear c None Softmax

FCN
Layer name Output dim. Activation function
Input image 3× 32× 32 None

Linear dl ReLU
Linear dl ReLU
Linear c Softmax
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D.3 Direct impact of label noise on minibatch gradients in SGD dynamics

In the previous sections, we demonstrated the impact of label noise on the drift in SGD dynamics.
Here, we extend our analysis to examine the direct impact of label noise on the minibatch gradient.
Using a similar decomposition as in Eq. (S.5), the minibatch gradient can be expressed as:

∆θt = −
η

B

∑
(xi,yi)∈B̃t

∇θLi(θt)

= −∇θRB̃t
(θt)η = −∇θR̂B̃c

t
(θt)η −∇θR̂B̃w

t
(θt)η,

(S.17)

where the corrupted minibatch B̃t at the t-th iteration, sampled from D̃tr, consists of Bc
t correct labels

and Bw
t wrong labels (i.e., Bc

t +Bw
t = B). Here, ∇θR̂B̃c

t
(θt) ≡ (Bc

t /B)∇θRB̃c
t
(θt) denotes the

gradients from the correct part on minibatch, and ∇θR̂B̃w
t
(θt) ≡ (Bw

t /B)∇θRB̃w
t
(θt) denotes the

gradients from the wrong part on minibatch. It is important to note that, unlike the decomposed
drifts in Eq. (S.5) are determined for a given θ and training dataset D̃tr, the decomposed minibatch
gradients in Eq. (S.17) are inherently stochastic due to the randomness of the minibatch sampling
process. This stochasticity introduces greater fluctuations in the minibatch gradients compared to
the drifts. However, the fact that the average of minibatch gradients aligns with the corresponding
drifts [e.g., ⟨∇θR̂B̃w

t
(θt)⟩ = ∇θR̂D̃w

tr
(θt)] ensures consistent overall trends, i.e., the orthogonal

relationship between ∇θR̂B̃c
t

and ∇θR̂B̃w
t

and the increasing contribution of ∇θR̂B̃w
t

with larger τ ,
as shown in Fig. S.3.

a b

Figure S.3: (a) Cosine similarities between −∇θRB̃t
(θ) and −∇θR̂B̃w

t
(θt) (cosϕtw; red), and

between −∇θRB̃c
t
(θ) and −∇θR̂B̃w

t
(θt) (cosϕcw; grey), respectively, throughout all training

iterations for varying noise rate τ . (c) Magnitude difference between the two vectors ∥∇θR̂B̃w
t
(θ)∥−

∥∇θR̂B̃c
t
(θ)∥ throughout all training iterations for varying τ . Here, we set the batch size to B = 8

in setting 1 described in Sec. 4. Darker colors represent larger values of τ .
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D.4 Complementary plots for Secs. 4.1, 4.2, 4.3, and 4.4

In order to facilitate a comparison between the resetting method and the original SGD, we normalized
the validation loss and test accuracy values in the main text by calculating the relative difference in the
metrics (RDVLoss and RDVAcc.). Here, we provide the unnormalized (i.e., original) validation loss
and test accuracy values: Figs. S.4, S.5, and S.6 in the Supplementary Materials are the unnormalized
results of Figs. 4, 5, and 6 in the main text, respectively. We additionally present test accuracies with
and without resetting for varying noise rates in Fig. S.7 with the default setting of cross-entropy loss
in Setting 2, and observe that resetting consistently improves performance even in the high-noise
regime.

ba

c

Figure S.4: (a) Validation loss and (b) test accuracy results with varying the checkpoint to reset to
with respect to reset probability r. Based on the checkpoint at the overfitting iteration tm, the results
are obtained in earlier iterations (left) and later iterations than tm (right). Here, tm + δt denotes the
iteration where the checkpoint is selected. (c) Validation loss (left) and test accuracy (right) with the
perturbed checkpoint parameters θc,ϵ. Here, θc,ϵ ≡ θc + ϵn̂ where θc denotes the checkpoint and n̂
denotes a random unit vector. The shaded areas denote the standard error.

ba

Figure S.5: Validation loss and test accuracy results with (a) varying the batch size B, and (b) varying
the noise rate τ with respect to the reset probability r. We set τ = 0.4 in (a) and B = 16 in (b). The
shaded areas denote the standard error.
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Figure S.6: Validation loss and test accuracy results with varying one section of the network to reset
to with respect to reset probability r. Here, we set τ = 0.4 and B = 16. The shaded areas denote the
standard error.

ba

Figure S.7: Test accuracy results for (a) CIFAR-10 and (b) CIFAR-100 dataset by varying the noise
rate τ . Inset shows the relative difference in test accuracy (RDTAcc.) to represent the relative
improvement compared to r = 0.

D.5 Ablation study for ELR and SOP+

Since the hyperparameters λ and (αu, αv) for ELR and SOP+ baselines depend on the loss landscape
(e.g., the dataset used, selection of model architecture, etc.), it is often costly to find optimal parameters
in practical situations. To ensure that the stochastic resetting method can help users achieve high
performance while not depending on the hyperparameter selection, we provide the test accuracy
results for both optimal hyperparameter and non-optimal hyperparameter situations using the publicly
available codes in Refs. [51, 73]. Table S.4 shows the test accuracies for different settings of ELR
and SOP+ baselines. Here, ELR and SOP+ denote the original methods with the hyperparameter sets
used in Refs. [51, 73], while ELR* and SOP+* denote the methods with different hyperparameters.
The hyperparameters for these methods are listed in Table S.2.

The results corresponding to the use of optimal hyperparameters for each method (first and third rows
in Table S.4, ELR and SOP+) show no significant improvement when stochastic resetting is used. On
the other hand, under the non-optimal hyperparameter settings (the second and fourth rows, ELR*
and SOP+*), the stochastic resetting method improves performance, especially for the CIFAR-100
dataset, which is more complex than CIFAR-10. These results suggest that stochastic resetting is
compatible with existing powerful methods and can improve performance while also acting as a
safeguard, regardless of the choice of hyperparameters for each method.

D.6 Test accuracies for datasets with asymmetric label noise

Table S.5 shows the test accuracy for the asymmetric noise case, while the rest of the settings remain
the same as in Table 1. Similar to the results in Table 1, we find again that the stochastic resetting
method makes robust improvement compared to no stochastic resetting. Similarly, results also show
a similar trend in improvement as the noise rate increases, and more improvement is obtained in the
CIFAR-100 dataset.
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Table S.4: Test accuracies (%) on test datasets with ELR and SOP+ methods. We compare the
performance without resetting (No) and with resetting (Reset) at r = 0.001. Results are presented
as the average and the standard deviation. The best results are indicated in bold with statistical
significance.

Dataset Method Noise rate τ = 0.2 Noise rate τ = 0.4 Noise rate τ = 0.6
No Reset No Reset No Reset

CIFAR-10

ELR 91.9± 0.2 91.9± 0.2 90.2± 0.2 90.2± 0.2 87.3± 0.3 87.3± 0.3
ELR* 91.2± 0.1 91.3± 0.2 88.8± 0.2 88.9± 0.2 84.6± 0.5 84.6± 0.5
SOP+ 95.5± 0.1 95.5± 0.1 94.8± 0.2 94.8± 0.2 93.6± 0.2 93.5± 0.2

SOP+* 94.1± 0.2 94.1± 0.2 89.9± 0.3 89.9± 0.3 85.0± 0.3 85.1± 0.3

CIFAR-100

ELR 73.2± 0.2 73.0± 0.4 69.6± 0.4 69.6± 0.4 62.8± 0.4 62.8± 0.4
ELR* 67.4± 0.3 70.4± 0.3∗∗∗ 55.1± 0.6 64.1± 0.6∗∗∗ 45.9± 0.7 54.0± 1.0∗∗∗

SOP+ 78.4± 0.2 78.5± 0.1 76.8± 0.3 76.8± 0.3 73.6± 0.6 73.6± 0.6
SOP+* 72.1± 0.3 72.1± 0.3 59.4± 0.5 65.7± 0.9∗∗∗ 48.4± 1.9 54.8± 2.3∗∗

Table S.5: Test accuracies (%) on test datasets with asymmetric noise by different methods. We
compare the performance without resetting (No) and with resetting (Reset) at r = 0.001. Results
are presented as the average and the standard deviation. The best results are indicated in bold with
statistical significance.

Dataset Method Noise rate 0.1 Noise rate 0.2 Noise rate 0.3 Noise rate 0.4
No Reset No Reset No Reset No Reset

CIFAR-10

CE 89.8± 0.3 93.3± 0.3∗∗∗ 88.5± 0.6 91.6± 0.6∗∗∗ 87.3± 1.3 90.0± 0.8∗∗∗ 83.3± 2.0 86.7± 0.8∗∗∗

Part — 92.6± 0.3∗∗∗ — 90.9± 0.4∗∗∗ — 89.6± 0.6∗∗ — 83.3± 2.6
MAE 89.1± 4.2 89.1± 4.2 75.5± 2.9 75.6± 3.0 57.0± 0.1 57.1± 0.2 56.9± 0.1 56.9± 0.1
GCE 92.2± 0.1 92.4± 0.3 89.2± 0.5 89.9± 0.2∗ 85.3± 0.7 86.1± 0.8∗∗∗ 78.0± 1.6 80.0± 1.0∗∗

SL 92.4± 0.1 92.5± 0.2 90.1± 0.1 90.7± 0.3∗ 87.6± 0.6 87.9± 0.3∗ 81.1± 0.9 81.7± 0.8∗∗∗

ELR* 93.4± 0.2 93.5± 0.2 92.7± 0.2 92.7± 0.2 91.9± 0.2 91.9± 0.3 90.4± 0.2 90.4± 0.3
SOP+* 94.5± 0.1 94.6± 0.2 94.0± 0.1 94.1± 0.2 93.0± 0.4 93.0± 0.4 91.3± 0.6 91.5± 0.2

CIFAR-100

CE 72.0± 0.5∗∗ 69.3± 0.9 55.8± 0.8 65.5± 1.5∗∗∗ 49.7± 1.5 58.6± 1.7∗∗∗ 41.6± 1.5 49.0± 1.6∗∗∗

Part — 69.2± 0.9∗∗∗ — 65.2± 1.1∗∗∗ — 58.8± 0.5∗∗∗ — 48.7± 1.3∗∗∗

MAE 21.7± 2.4 21.7± 2.4 17.5± 1.7 17.6± 1.8 16.2± 1.3 15.9± 1.3 14.2± 2.1 14.2± 2.1
GCE 69.3± 0.5 70.0± 0.2 62.0± 0.8 63.9± 1.2∗∗ 53.1± 0.9 55.2± 1.5∗∗ 41.7± 0.5 43.6± 1.0∗

SL 59.1± 1.2 66.0± 1.2∗∗∗ 54.0± 3.2 60.1± 2.7 50.0± 1.1 55.4± 1.5∗ 41.2± 1.5 46.1± 1.0∗∗∗

ELR* 74.9± 0.4 74.9± 0.4 71.8± 0.1 71.8± 0.1 66.2± 0.5 68.4± 1.6∗ 57.2± 0.6 61.3± 1.8∗∗

SOP+* 74.3± 0.4 74.5± 0.5 67.4± 0.4 70.9± 0.5∗∗ 59.6± 0.5 63.7± 1.7∗∗ 50.1± 0.6 52.9± 1.9∗

D.7 Validation loss results in Sec. 4.4

Table S.6 presents the validation loss results from the corresponding models used in Table 1 in the
main text. Similar to the test accuracy results in Table 1, Table S.6 shows that our resetting method
consistently achieves either at least equivalent or lower validation losses compared to the baseline
approach (i.e., no resetting).

Table S.6: Validation losses with different methods. We compare the performance without resetting
(No) and with resetting (Reset) at r = 0.001. Results are presented as the average and the standard
deviation. The best results are indicated in bold with statistical significance.

Dataset Method Noise rate 0.2 Noise rate 0.4 Noise rate 0.6
No Reset No Reset No Reset

CIFAR-10

CE 1.231± 0.018 1.164± 0.015∗∗∗ 1.774± 0.010 1.734± 0.018∗∗ 2.124± 0.009 2.102± 0.012∗∗

PartRestart — 1.184± 0.012∗∗ — 1.748± 0.014∗ — 2.114± 0.011
MAE 0.545± 0.009 0.545± 0.009 0.968± 0.039 0.963± 0.039 1.422± 0.042 1.420± 0.042
GCE 0.388± 0.008 0.383± 0.009 0.686± 0.007 0.673± 0.007∗ 0.957± 0.009 0.945± 0.011
SL 2.720± 0.047 2.707± 0.041 4.759± 0.045 4.702± 0.055 6.617± 0.059 6.558± 0.069

ELR* 1.572± 0.081 1.572± 0.081 1.718± 0.021 1.723± 0.022 2.012± 0.006 2.016± 0.006
SOP+* 2.067± 0.035 2.029± 0.061 1.611± 0.007 1.632± 0.021 2.004± 0.01 2.011± 0.012

CIFAR-100

CE 2.759± 0.053 2.583± 0.051∗∗∗ 3.675± 0.064 3.540± 0.074∗ 4.283± 0.023 4.201± 0.026∗∗∗

PartRestart — 2.564± 0.047∗∗∗ — 3.549± 0.067∗ — 4.206± 0.019∗∗∗

MAE 1.690± 0.039 1.690± 0.039 1.864± 0.044 1.864± 0.045 1.932± 0.010 1.931± 0.010
GCE 0.644± 0.007 0.636± 0.008 0.896± 0.007 0.883± 0.006∗ 1.129± 0.004 1.116± 0.006∗∗

SL 4.837± 0.066 4.727± 0.066∗ 6.578± 0.036 6.427± 0.059∗∗ 8.108± 0.043 7.996± 0.038∗∗

ELR* 3.393± 0.072 2.678± 0.099∗∗∗ 3.985± 0.477 3.556± 0.073 4.242± 0.039 4.253± 0.068
SOP+* 2.600± 0.061 2.605± 0.047 3.616± 0.338 3.43± 0.082 4.185± 0.074 4.180± 0.088
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D.8 Training time comparison & scalability discussion for large-scale models

In our experiments, we used DNN models up to ResNet-34, which has approximately 21M parameters
and requires about 85MB in FP32 precision. For these models, the memory required to store the
checkpoint did not significantly burden GPU memory, allowing us to maintain both the current model
and the checkpoint in GPU memory during training. Consequently, this approach did not result in
any noticeable increase in training time. To validate this, we measure the training time ratios between
runs with and without resetting in our experiments on the small dataset ciFAIR-10 (Setting 1 in
Sec. 4.2) and the real-world noisy datasets CIFAR-10N/100N (Setting 3 in Sec. 4.5). As shown in
Fig. S.8, the training time ratios consistently fall within the error bars near 1 regardless of the reset
probability r. Note that the training time results for CIFAR-10N/100N in Setting 3 are almost the
same as the results for CIFAR-10/100 in Setting 2. These results demonstrate that our method does
not involve significant time overhead when GPU memory is sufficient to maintain two DNN models
simultaneously during training.

However, for much larger models, it may not be feasible to keep both the current model and the
checkpoint in GPU memory. In such cases, the checkpoint would need to be stored on a storage
device and reloaded at each reset operation, potentially incurring additional I/O overhead. To estimate
this cost for large-scale models, let us consider GPT-3 [103], which has 175B parameters (350GB in
FP16), and single storage PCIe Gen4 x4 NVMe SSD with a transfer speed of 7GB/s. Then, loading
or saving the model would take approximately 50 seconds per operation. GPT-3 was trained on
300B tokens with a global batch size of 3.2M tokens per iteration, resulting in approximately 94,000
iterations. Assuming 1,024 V100 GPUs [104], the total training time for GPT-3 is calculated as
3.55 days. Applying our method with r = 10−3 to GPT-3 would only add 47,000 seconds (0.05
days) to the total training time, which is negligible in comparison to the overall training duration.
Furthermore, while this calculation assumes the use of a single storage device, distributed storage
systems are commonly employed for large-scale model training. These systems can significantly
reduce loading times, minimizing the I/O overhead associated with resetting.

These findings demonstrate both the scalability and applicability of our method to large-scale models
without significant time overhead. The performance improvements achieved on ViTs in Table 2
further support our claims. Additionally, the partial resetting method described in Sec. 4.3 offers an
effective solution to mitigate I/O costs by resetting only portions of the DNN rather than the entire
model, making it even more practical for large-scale implementations.
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Figure S.8: Training time ratio of runs with resetting compared to runs with no reset (a) on ciFAIR-10
with varying the noise rate τ and the reset probability r (Sec. 4.2), and (b) on real-world noisy datasets,
CIFAR-10N/100N (Sec. 4.5). Error bars indicate the standard deviation.
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