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Abstract

Despite its prevalence, giving up and starting over may seem wasteful in many
situations such as searching for a target or training deep neural networks (DNNs).
Our study, though, demonstrates that restarting from a checkpoint can significantly
improve generalization performance when training DNNs with noisy labels. In
the presence of noisy labels, DNNs initially learn the general patterns of the
data but then gradually overfit to the noisy labels. To combat this overfitting
phenomenon, we developed a method based on stochastic restarting, which has been
actively explored in the statistical physics field for finding targets efficiently. By
approximating the dynamics of stochastic gradient descent into Langevin dynamics,
we theoretically show that restarting can provide great improvements as the batch
size and the proportion of corrupted data increase. We then empirically validate
our theory, confirming the significant improvements achieved by restarting. An
important aspect of our method is its ease of implementation and compatibility with
other methods, while still yielding notably improved performance. We envision it
as a valuable tool that can complement existing methods for handling noisy labels.

1 Introduction

When we explore a search space having complex choices of training schemes or search for appropriate
hyper-parameters of deep neural networks (DNNs), we often meet circumstances that cause us to
just give up and train the network all over again. This is akin to our experiences in daily life, where
we face various tasks that require solving problems through hit-and-miss. For example, when trying
to find a beloved one’s face in a crowd, our eyes typically flick back to a chosen starting point after
scanning the surrounding area. Similarly, when searching for a misplaced wallet after a big night
out, we often fail to locate it and restart our search from some original location. These patterns
are also frequently observed in animal behavior, such as foraging for food and returning to familiar
locations such as nests or dens. In these situations, one might think that revisiting previously visited
places is a waste of time and resources, potentially diminishing search performance. However, recent
developments in statistical physics have proved that restarting from the starting or mid-point can
improve the performance of the search process, meaning it is not so haphazard after all.

This effect of restarting from a particular configuration has been extensively investigated in the field
of statistical physics in recent years [1, 2]. These investigations typically involve a blind searcher
who evolves their current state stochastically over time without knowledge of the target’s location.
Surprisingly, it has been found that restarting does not hinder the search process but rather can make
the searcher more efficient across diverse conditions, including scenarios with high dimensions or the
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Figure 1: (a) Schematic of stochastic gradient descent (SGD) dynamics with stochastic restarting.
The network parameters vector θ evolves via SGD to find an optimal value θ∗ on the training risk
landscapeRD̃tr

(upper colormap), which differs from the true risk landscapeRD (lower colormap)
due to corrupted data. Here, θ resets to the checkpoint θc (home icon) with the restart probability r
and restarts from θc. (b) Fraction of correctly predicted data with wrong labels during training with
SGD (gray) and SGD with restart (green). The inset shows the validation losses during training.

presence of external forces [3–11]. Capitalizing on the success of the restarting strategy, numerous
algorithms incorporating this approach have begun to emerge in diverse fields such as molecular
dynamics simulations [12, 13] and queuing systems [14].

In this work, we apply the stochastic restarting strategy to supervised learning with noisy labels and
show that it can prevent overfitting to corrupted data (also called the memorization effect). During
training, our method resets the model parameters to a checkpoint with a certain probability and
restarts the training process [Fig. 1(a)]. We make an in-depth exploration to understand the conditions
and mechanisms by which restarting can help stochastic gradient descent (SGD) find the optimal
parameters by mapping the SGD dynamics to the corresponding Langevin dynamics. Our main
contributions are summarized as follows.

• We develop a new DNN training method incorporating stochastic restarting, and we provide
both theoretical and empirical evidence that restarting can mitigate overfitting to corrupted
data. We also discuss the means to select preferable checkpoints (Sec. 4.1).

• Drawing from insights into the advantageous mechanism of restarting in search processes,
we find that the improvement gained through restarting increases as the stochasticity of the
SGD dynamics and the proportion of corrupted training data increase (Sec. 4.2).

• We show that the restarting method can be seamlessly incorporated into existing methods
and consistently improves generalization performance across several standard benchmark
datasets (Sec. 4.4). We emphasize that our method is easy and compatible with other
methods, but yields significantly improved performance.

2 Related Works

2.1 Deep learning from noisy labels

While the accessibility of large datasets has propelled remarkable advancements in DNNs, the pres-
ence of noisy labels within these datasets often leads to erroneous model prediction [15]. Specifically,
DNNs tend to overfit the entire corrupted training dataset by memorizing the wrong labels, which
degenerates their generalization performance on a test dataset. Numerous studies have been conducted
to address this overfitting phenomenon [16–21], and it has been revealed that DNNs initially learn the
clean data (general patterns) during an early learning stage and then gradually memorize the corrupted
data (task-specific patterns) [22, 23]. The overfitting issue stemming from the memorization effect
can be seen in Fig. 1(b), where the model’s accuracy in predicting the true labels of the data with noisy
labels exhibits an inverted U-shaped curve as the model progressively memorizes the noise. Based
on this understanding, the surprising effectiveness of the early-stopping method [24] in alleviating
the memorization effect becomes evident; as such, various methods have been proposed to leverage
this insight, including Co-teaching [25], SELFIE [26], early learning regularization (ELR) [27], and
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robust early learning [28]. Our proposed algorithm also capitalizes on this insight by enabling the
DNN to restart from a checkpoint, i.e., previously visited parameters during early learning stages.

2.2 Search processes and stochastic restarting in statistical physics

Search processes are ubiquitous across various domains, spanning from systems in nature to ap-
plications in engineering. For instance, ligands exhibit search processes as they navigate toward
target binding sites within proteins [29–31], and similarly, predators employ search strategies to
locate their prey in the wild [32, 33]. In engineering, search processes are relevant to finding primary
research studies [34], ranking web pages [35], and determining optimal hyper-parameters for training
algorithms [36]. Although diverse search strategies are employed depending on the problem at hand,
they share a common goal: to identify an efficient search protocol. Efficiency is typically assessed by
the time required to reach a target, referred to as the first passage time (FPT) in the context of random
walk literature [37]. Numerous search strategies have been investigated to achieve this goal, including
the Lévy strategies [38, 39], self-avoiding walks [40, 41], intermittent strategies [42], persistent
random walks [43], and more [44]. One recent strategy that has garnered attention is stochastic
restarting, with studies showcasing its ability to enhance the search performance [2, 7, 45, 10]. In
particular, these studies have demonstrated that stochastic restarts prevent a random searcher from
wandering too far, thereby ensuring a finite mean time to find a target, whereas the mean time is
infinite for a diffusive particle without restarting. Drawing from this concept, we introduce a restarting
method for training DNNs and illustrate its effectiveness in addressing the noisy label problem.

3 Methodology

In this section, we introduce our simple Algorithm 1 utilizing stochastic restarting to mitigate the
memorization effect on training data with noisy labels. We also demonstrate how restarting can lead
to improved generalization performance by approximating SGD dynamics into Langevin dynamics.

Problem setup. Consider a c-class classification problem, which is a supervised learning task aimed
at training a function to map input features to labels through a DNN. Let X ⊂ Rp be the feature
space, Y = {0, 1}c be the label space in one-hot vector form, and fθ : X → Y be a DNN model
where θ ∈ Rd encompasses all trainable parameters in the DNN. The goal is to find an optimal
θ∗ such that fθ∗ accurately assigns labels to corresponding input features, given an unknown joint
probability distribution PD over X × Y [Fig. 1(a)]. To obtain this, a training algorithm is applied to
minimize the risk RD(θ) ≡ ⟨L (x,y;θ)⟩D during training, where L denotes a loss function (e.g.,
cross-entropy loss). Here, L (x,y;θ) denotes the loss for a sample (x,y) from PD with a given
model fθ, and ⟨·⟩D denotes the average over PD. In a typical classification problem, the DNN is
trained by minimizing the risk on the training dataset Dtr via SGD and θ∗ is selected at the minimum
risk on the validation dataset Dval to mitigate overfitting on Dtr, where Dtr(val) = {(xi,yi)}

Ntr(val)

i=1

and each (xi,yi) is sampled from PD. Empirically, the risk on the training (validation) dataset is
computed as RDtr(val)

(θ) =
(
1/Ntr(val)

)∑Ntr(val)

i=1 L (xi,yi;θ). In the presence of noisy labels,
suppose we have a corrupted training dataset D̃tr = {(xi, ỹi)}Ntr

i=1, where ỹ is a noisy label that may

Algorithm 1 Stochastic Restarting

Require: Corrupted training set D̃tr, validation set Dval, restart probability r, threshold T .
1: Initialize θ0 and set t = 0, θc = None, and θbest = None
2: for t = 0 to T do
3: Update θt ← θt− η

B

∑
(xi,yi)∈Bt

∇θLi(θt) where Bt is a randomly sampled batch from D̃tr

4: if θc ̸= None and rand(0, 1) < r then
5: Restart θt ← θc
6: end if
7: θbest ← Valid(θt,Dval) where Valid(θt,Dval) checks whetherRDval

(θt) is the minimum.
8: if θbest remains unchanged for T iterations or θt = θbest then
9: Set the checkpoint θc ← θbest

10: end if
11: end for
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Figure 2: (a) Schematic of −∇θRD̃tr
(θ), decomposed by two orthogonal terms −∇θR̂D̃c

tr
(θ) and

−∇θR̂D̃w
tr
(θ). (b) Cosine similarity between −∇θRD̃tr

(θ) and −∇θR̂D̃w
tr
(θ), denoted by cosϕtw,

throughout all training iterations for varying noise rate τ . (c) Magnitude difference between the two
vectors ∥∇θR̂D̃w

tr
(θ)∥ − ∥∇θR̂D̃c

tr
(θ)∥ throughout all training iterations for varying τ . Here, we

set the batch size to B = 8 in setting 1 described in Sec. 4.

be corrupted from a ground truth label yi, and (xi, ỹi) is sampled from the corrupted distribution
PD̃. This corrupted dataset can be partitioned into two subsets, i.e., D̃tr ≡ [D̃c

tr, D̃w
tr], where D̃c

tr

(D̃w
tr) consists of N c

tr (Nw
tr ) samples with correct (wrong) labels. Note that N c

tr = (1 − τ)Ntr and
Nw

tr = τNtr for an unknown noise rate τ ∈ [0, 1].

3.1 SGD dynamics with noisy labels

When we apply the minibatch SGD to minimize the empirical risk RDtr
(θ) with respect to θ, the

update rules of θ at each training iteration t can be represented by

∆θt = −
η

B

∑
(xi,yi)∈Bt

∇θLi(θt)

= − η

Ntr

∑
(xi,yi)∈Dtr

∇θLi(θt) +

 η

Ntr

∑
(xi,yi)∈Dtr

∇θLi(θt)−
η

B

∑
(xi,yi)∈Bt

∇θLi(θt)

 ,

(1)
where θt is θ at the t-th iteration, ∆θt ≡ θt+1 − θt, and Li(θt) ≡ L(xi,yi;θt) for simplicity.
Here, η > 0 is the learning rate and Bt is a minibatch of size B consisting of independent and
identically distributed (i.i.d.) samples from Dtr. While the first term on the right-hand-side (RHS) is
deterministic for a given Dtr, the second term on the RHS is stochastic due to the randomly sampled
batch at each iteration. Thus, Eq. (1) can be rewritten as

∆θt = −∇θRDtr
(θt)η + ξt

√
η, (2)

where a random noise vector ξt ≡
√
η (∇θRDtr(θt)−∇θRBt(θt)) ∈ Rd satisfies ⟨ξt⟩Dtr = 0 and

⟨ξtξTs ⟩Dtr = 2D(θt)δts with D(θt) ≡ ηΣ(θt)/(2B), where δij denotes the Kronecker delta (see
details in the Supplementary Materials and Refs. [46–48]). In terms of Langevin dynamics,RDtr(θ)
and D(θ) correspond to the potential and diffusion matrix, respectively, where the former generates
the deterministic long-term trend called drift and the latter determines the level of stochasticity of the
system [49]. As a result, the SGD dynamics of θt can be understood by the Langevin dynamics of a
d-dimensional particle diffusing with drift −∇θRDtr

(θt) and diffusion matrix D(θt).

For a corrupted dataset D̃tr, the equation of SGD dynamics remains analogous to Eq. (2) when we
substitute Dtr with D̃tr. Then, we can divide the drift vector −∇θRD̃tr

(θt) into two components,
one originating from D̃c

tr and the other from D̃w
tr as follows [Fig. 2(a)]:

∆θt = −
[
∇θR̂D̃c

tr
(θt) +∇θR̂D̃w

tr
(θt)

]
η + ξt

√
η, (3)

with the gradients from the correct part ∇θR̂D̃c
tr
(θt) ≡ (1− τ)∇θRD̃c

tr
(θt) and the gradients from

the wrong part ∇θR̂D̃w
tr
(θt) ≡ τ∇θRD̃w

tr
(θt). Note that ⟨∇θRD̃c

tr
(θt)⟩D = ⟨∇θRDtr(θt)⟩D,
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implying that −∇θR̂D̃c
tr
(θt) reflects the gradients toward the true optimum, while −∇θR̂D̃w

tr
(θt)

reflects the gradients toward the false optimum by memorizing the noisy labels. Additionally,
−∇θR̂D̃c

tr
(θt) and −∇θR̂D̃w

tr
(θt) are generally orthogonal to each other due to their high-

dimensionality [Fig. S.2 in the Supplementary Materials], leading to −∇θRD̃tr
(θt) being rep-

resented by the sum of two orthogonal vectors. Thus, −∇θRD̃tr
(θt) becomes more correlated with

−∇θR̂D̃w
tr
(θt) as the noise rate τ increases. Fig. 2(b) and (c) illustrate that −∇θR̂D̃w

tr
(θt) becomes

increasingly dominant so that the drift gradually tilts toward wrong directions as τ increases, where
cosϕtw denotes the cosine similarity between −∇θR̂D̃c

tr
(θt) and −∇θR̂D̃w

tr
(θt) and ∥ · ∥ denotes

the Euclidean norm of a vector. This gradually tilting trend toward a wrong direction can also be
observed with respect to iteration t, implying that −∇θR̂D̃w

tr
(θt) becomes increasingly dominant

as the learning process progresses beyond an early learning phase [27]. Therefore, in the presence
of noisy labels, we can see that −∇θR̂D̃w

tr
(θt) emerges and hinders the search for the optimal

parameters θ∗.

3.2 Stochastic restarting method

We now describe how the stochastic restarting process can be integrated into SGD. Based on this, we
establish the specific premises of this work. Let θc be a checkpoint to restart from and r be the restart
probability at each iteration t, where a checkpoint refers to previously visited model parameters
during training. By incorporating the restarting process, Eq. (2) for D̃tr can be expressed as

θt+1 =

{
θc, with probability r,

θt −∇θRD̃tr
(θt)η + ξt

√
η, otherwise.

(4)

The SGD dynamics with stochastic restarting involves two processes: restarting from a checkpoint
θc with probability r [top of Eq. (4)], and maintaining the SGD dynamics with probability 1 − r
[bottom of Eq. (4)]. Note that Eq. (4) shares the same form as the (overdamped) Langevin equation
with Poissonian reset [3], and also that training DNNs to find optimal parameters can be likened to
a search process for an unknown target. These parallels imply that similar advantages may arise in
the training process of DNNs as in the search process of Langevin dynamics. In this search process,
stochastic restarting has been proven to aid random searches for an unknown target by suppressing
trajectories away from the target and increasing the chances of finding it. Here, the search efficiency
is usually quantified by the mean first passage time (MFPT) [37], the average time to find a target.
As mentioned in Sec. 2, the MFPT can be reduced by restarting in various situations. The beneficial
properties of restarting in Langevin dynamics can be summarized as follows (see the Supplementary
Materials for a brief review and formal statement of stochastic restarting with MFPT):

When the stochasticity is sufficiently larger than the drift component toward a target, there is
an optimal restart probability, and restarting can be beneficial for random searches.

Importantly, in supervised learning with noisy labels, the stochasticity of the SGD dynamics increases
as batch size B decreases, and the drift component toward a target −∇θR̂D̃c

tr
(θt) weakens as the

noise rate τ increases. Therefore, the above statement and the observation about stochasticity and
drift suggest that the restarting strategy would be beneficial to search for optimal parameters in
the presence of noisy labels. In Sec. 4, we perform several experiments and empirically show that
stochastic restarting enhances generalization performance.

4 Experiments

In our experiments, we perform image classification tasks with noisy labels in the following settings.

Setting 1 (Sec. 4.1, 4.2, and 4.3). To examine the impact of stochastic restarting on the noisy label
problem, we first utilize a small dataset called ciFAIR-10 [50], a variant of CIFAR-10 [51]. We
employ a vanilla convolutional neural network (VCNN, see the Supplementary Materials) to facilitate
a straightforward testing of our claims. Training is performed using cross-entropy loss and the SGD
optimizer with a fixed learning rate of 10−2. A clean validation set, Dval, is used to select the best
model and monitor the validation loss during training.
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Figure 3: (a) Test accuracies of the SGD (gray) and the SGD with our restarting method (green)
during training. The inset shows the validation losses. (b,c) Relative difference of validation loss
(RDVLoss) with varying the checkpoint to restart with respect to the restart probability r. In (b),
based on the checkpoint at the overfitting iteration tm, RDVLoss is obtained in earlier iterations (left)
and later iterations than tm (right). tm + δt denotes the iteration where the checkpoint is selected. In
(c), RDVLoss is plotted with the perturbed checkpoint parameters θc,ϵ ≡ θc + ϵn̂, where θc denotes
the checkpoint and n̂ denotes a random unit vector. The shaded areas denote the standard error.

Setting 2 (Sec. 4.4). We assess the generalization performance of our method on two benchmark
datasets, CIFAR-10 and CIFAR-100 [51], utilizing a ResNet-34 [52] and training it with SGD with
a momentum of 0.9. Additional details for the choice of hyper-parameters are provided in the
Supplementary Materials. To demonstrate the efficacy of our method, we compare test accuracy with
and without restarting. Note that the optimizer and learning rate scheduler do not restart throughout
this experiment. To consider practical situations, a corrupted validation set, D̃val, is used for model
selection and validation loss monitoring during training.

Across both settings, we apply symmetric noise with a noise rate τ , where each label in c classes is
randomly flipped to an incorrect label in other classes with equal probability τ/(c− 1). Note that
all results are obtained from the model at the optimal iteration based on minimum validation loss as
default, and also that the resulting test accuracy is evaluated on the clean validation set, i.e., the test
dataset Dte is set to Dval. To check the effectiveness of restarting compared to the original training,
we use the relative difference in validation loss (RDVLoss) and the relative difference in test accuracy
(RDTAcc.) as metrics to indicate the relative improvement compared to the baseline. These metrics
are calculated by [v(r)− vbase]/vbase, where v(r) is the resulting value with the restart probability r
and vbase is the baseline value obtained from the original training (vbase = v(0)). The unnormalized
results can be found in the Supplementary Materials. We repeated our experiments five times across
both settings to report the average and standard error values.

4.1 Which checkpoint would be preferable to restart from?

To introduce the restarting strategy in DNN training, we first explore which checkpoint is suitable to
restart from to find optimal parameters. A straightforward choice is to select the parameters at the
overfitting iteration tm. Here, the overfitting iteration tm refers to an iteration where the validation
loss ceases to decrease and begins to increase due to the memorization effect [inset of Fig. 1(b)].
The checkpoint at tm, denoted by θm, has the minimum validation loss during training when the
double descent phenomenon does not occur [53], and is typically employed as an early-stopping point.
Instead of early stopping and considering θm as the final model, we utilize θm as the checkpoint θc
to restart from [Algorithm 1], leading to significantly improved results [Fig. 3(a)]. Here, θc is initially
set to θm and adaptively changes to the parameter at a newly found minimum validation loss during
training. As can be seen in Fig. 3(a), restarting suppresses the trajectory of θ to be near θc, which
successfully prevents memorizing the noisy labels and increases the chance to find more appropriate
parameters. It is important to note that the restart probability r controls the degree of suppression
and the results at r = 0 and r = 1 are almost the same due to the overfitting phenomenon (the case
of r = 1 corresponds to the early-stopping method). Therefore, the resulting RDVLoss curve for r
should be U-shaped, indicating that an optimal r exists to optimize the performance.
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Figure 4: Relative difference of validation loss (RDVLoss, left) and relative difference of test accuracy
(RDTAcc., right) results with (a) varying the batch size B, and (b) varying the noise rate τ with
respect to the restart probability r. We set τ = 0.4 in (a) and B = 16 in (b). The shaded areas denote
the standard error.

While we simply select θm as the initial θc and adaptively update it, one may ask what effect the
choice of θc has. To check this, we experiment with a fixed checkpoint both earlier and later than θm.
For earlier checkpoints [left panel in Fig. 3(b)], the improvement over restarting from θm slightly
decreases and the value of the optimal r gets smaller as the checkpoint gets earlier. In contrast, for
later checkpoints [right panel in Fig. 3(b)], the improvement over restarting from θm significantly
decreases as the checkpoint gets later. These results support our understanding of the beneficial
mechanism of restarting in increasing the chance of finding better parameters, because the chance
would decrease as the model memorizes more noise. Therefore, we can conclude that restarting in
early learning stages is a good choice; the more memorization occurs, the smaller the improvement.

We additionally experiment to verify how the effect of restarting changes with the distance between
the (adaptive) checkpoint θc at the minimum validation loss and a perturbed checkpoint θc,ϵ. Here,
we set the perturbed checkpoint by adding the perturbation ϵn̂ into θc with varying the perturbation
magnitude ϵ, where n̂ ≡ n/∥n∥ ∈ Rd is a random unit vector with a standard normal random vector
n. As shown in Fig. 3(c), it is observed that the benefits of restarting decrease as the distance between
the checkpoint to restart from and θm increases. This result also supports that while restarting can
improve the generalization performance, the choice of checkpoint to restart from can affect the
performance, and that the minimum validation loss point is a good choice.

4.2 Impact of stochasticity and drift on stochastic restarting

As the statement highlighted in Sec. 3.2 clarifies, it has been proven in the statistical physics field
that the restarting strategy can improve search efficiency as the stochasticity becomes larger than the
drift component toward a target. In this section, we verify whether this statement is also valid in the
training of DNNs and show under what circumstances restarting is more effective than not restarting.

It is first important to note that the stochasticity and the drift toward a target, i.e., −∇θR̂D̃c
tr

, can be
controlled by the batch size B and the noise rate τ , respectively, as illustrated in Sec. 3.1. Particularly,
D(θt) ∝ 1/B and ∇θR̂D̃c

tr
(θt) ∝ 1 − τ , meaning that the stochasticity increases and the drift

toward a target decreases as B decreases and τ increases, respectively. We quantitatively examine the
RDVLoss and the RDTAcc. values with varying B and τ with respect to the restart probability r.
Remarkably, the improvements of RDVLoss and RDTAcc. with restarting become more significant
as B decreases [Fig. 4(a)] and τ increases [Fig. 4(b)]. These observations strongly support our claim
that stochastic restarting offers more benefits as the stochasticity increases and the drift toward a
target decreases. Moreover, we expect that the optimal restart probability r∗ decreases as B decreases
and τ increases, but this can only be verified qualitatively because the fluctuation of the results makes
it difficult to identify r∗.

4.3 Ablation study on partial restarting

Until now, we have leveraged the memorization effect in our algorithm by utilizing the parameters at
the minimum validation loss as the checkpoint for restarting the entire network, a process referred to
as full restarting. However, several studies have highlighted that different layers within a DNN exhibit
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Figure 5: Relative difference of validation loss
(RDVLoss) and relative difference of test accuracy
(RDTAcc.) results with varying one section of
the network to restart with respect to the restart
probability r. We set τ = 0.4 and B = 16. The
shaded areas denote the standard error.

varied learning behaviors, leading to distinct lev-
els of overfitting across these layers [54, 55].
A prevailing explanation for this phenomenon
suggests that gradients tend to weaken as they
propagate from the latter layers (closer to the
output layer) to the former layers. Here, we ex-
periment on which layers, former or latter, play
a more dominant role in improving performance
with the restarting method.

For this, we introduce partial restarting, which
involves restarting only one section of the net-
work layers rather than the entire network, while
the remaining section of layers continues to
follow the standard SGD update rule without
restarting. We divide the VCNN structure into
former and latter sections, comprising convolu-
tional and linear layers, respectively, and apply
partial restarting to one section. Interestingly, our experiments reveal that partial restarting of the latter
section can further enhance generalization performance compared to full restarting, whereas partial
restarting of the former section does not yield improvements over the case with no restarting (r = 0)
[Fig. 5]. Moreover, even when we freeze the latter section by setting r = 1, partial restarting of the
latter section still achieves significant improvement. We attribute these findings to a well-established
observation: the former layers of CNNs tend to learn general features, while the latter layers tend to
specialize in capturing specific features [56–59, 54]. In other words, the latter section composed of
linear layers exhibits strong memorization of the corrupted data, leading to improved performances
even when we freeze the latter section (r = 1), whereas the former section composed of convolutional
layers focuses on learning general features, leading to no improvements even with restarting.

It is essential to note that although our ablation study suggests the effectiveness of partial restarting,
our findings do not imply that partial restarting of the latter section always enhances generalization
performance compared to full restarting. The extent to which each layer overfits the corrupted data
depends on multiple factors, such as the network structure and the choice of loss function. Thus,
determining the most effective section of the network to restart also hinges on the specific context.
Future research investigating these points would be intriguing and valuable.

4.4 Results on corrupted benchmark datasets

Finally, we investigate the impact of the stochastic restarting strategy on the performance of bench-
mark datasets, CIFAR-10 and CIFAR-100, with varying methods (setting 2). Table 1 compares the
best results without restarting (No) and with restarting (Restart) at the restart probability r = 0.001. In
the table, CE denotes cross-entropy loss, PartRestart denotes cross-entropy loss with partial restarting
(Sec. 4.3), MAE denotes robust mean absolute error [60], GCE denotes generalized cross-entropy [61],
SCE denotes symmetric cross-entropy loss [62], and ELR denotes early-learning regularization [27].
The PartRestart method stochastically restarts only the last linear layer and the last two block layers
of ResNet-34, not the entire network. We describe the additional details about the hyper-parameters
for each method in the Supplementary Materials.

Remarkably, in all cases examined, our restarting method consistently achieves either at least
equivalent or higher test accuracies compared to the baseline approach involving no restarting
[Table 1]. Results show that the extent of improvement becomes more pronounced as the noise rate
increases, which supports our claim that restarting becomes more advantageous with higher noise
rates. Furthermore, while the PartRestart method also obtains improved performance, it does not
surpass the benefits of full restarting. We conjecture that the network structure may influence the
extent of additional improvements obtained, as the memorization effect in different layers can vary
depending on the network architecture [63]. Unfortunately, minimal improvements are observed in
the MAE results on both datasets. This is primarily because the MAE convergence is too slow to
identify a suitable checkpoint for restarting, consequently resulting in few instances of restarting in
many experiments. We also verify the improvement of the validation loss when using our restarting
method [Table S.2 in the Supplementary Materials].
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Table 1: Test accuracies (%) on test datasets with different methods. We compare the performance
without restarting (No) and with restarting (Restart) at r = 0.001. Results are presented as the
average and the standard deviation. The best results are indicated in bold with statistical significance.

Dataset Method Noise rate 0.2 Noise rate 0.4 Noise rate 0.6
No Restart No Restart No Restart

CIFAR-10

CE 84.8± 0.4 90.0± 0.5∗∗∗ 80.8± 0.7 86.3± 0.7∗∗∗ 72.9± 0.7 79.5± 0.9∗∗∗

PartRestart — 88.5± 0.4∗∗∗ — 83.7± 0.9∗∗∗ — 75.1± 0.4∗∗∗

MAE 91.0± 0.2 91.0± 0.2 85.6± 3.3 85.9± 3.3 67.1± 6.8 67.3± 6.7
GCE 90.6± 0.1 91.0± 0.2∗ 85.3± 0.4 87.1± 0.3∗∗∗ 76.2± 0.5 79.1± 0.8∗∗∗

SCE 91.3± 0.3 91.4± 0.1 86.6± 0.2 87.9± 0.2∗∗∗ 80.1± 0.5 81.6± 0.6∗∗

ELR 91.5± 0.2 91.4± 0.2 87.8± 0.4 87.8± 0.4 81.1± 0.3 81.1± 0.3

CIFAR-100

CE 62.7± 5.6 64.5± 1.5 45.6± 2.3 56.9± 3.0∗∗∗ 32.9± 1.6 44.1± 3.1∗∗∗

PartRestart — 64.0± 0.9 — 55.5± 2.1∗∗∗ — 43.5± 1.5∗∗∗

MAE 19.9± 2.8 19.9± 2.8 11.0± 3.8 10.8± 3.7 6.7± 1.2 6.8± 1.3
GCE 68.3± 0.4 69.3± 0.2∗∗ 61.2± 0.6 63.2± 0.3∗∗∗ 50.1± 0.6 53.1± 0.8∗∗∗

SCE 54.5± 1.2 62.0± 1.0∗∗∗ 44.4± 1.4 52.8± 0.7∗∗∗ 29.3± 2.5 36.3± 1.8∗∗∗

ELR 66.4± 0.4 67.2± 1.2 57.4± 1.0 60.9± 2.0∗∗ 47.2± 1.4 48.0± 2.6

5 Discussion

In this work, we developed a stochastic restarting method to overcome overfitting in supervised
learning with noisy labels, motivated by the success of the restarting strategy in statistical physics.
By analyzing SGD dynamics through the lens of Langevin dynamics, we theoretically identified
factors that influence the effectiveness of restarting and empirically validated our method as well
as the impact of these factors. Our experiments showed that the restarting method consistently
yields additional improvements compared to existing methods on benchmark datasets. And as our
method can be implemented with minimal code changes and without additional computational costs,
flexibility and ease of integration with other approaches are ensured. This simplicity also facilitates
extensions to other variants, such as non-Poissonian restarting [64, 65] and state-dependent restart
probability [3, 66], etc [2].

The main limitation is that our method may be hard to apply when the double descent phenomenon
occurs or the convergence of validation loss is too late, such as the MAE case in Table 1. Moreover, it
is hard to identify the optimal restart probability from a few experiments. In fact, it has been observed
that the coefficient of variation of the FPT is unity at the optimal restart probability in a random
search problem [67, 68]. We believe that investigating whether a similar relationship exists in DNN
training will help to identify the optimal restart probability in practice, and will be interesting for
future work.

We note that the restarting method shares a similar spirit with forgetting, which refers to the loss
of previously acquired knowledge [69]. Similar to restarting, forgetting was initially viewed as
a catastrophic phenomenon that needed to be addressed [70, 71]. However, recent studies have
highlighted its benefits, leading to its use in improving network performance [72, 73]. From this
perspective, restarting can be viewed as a form of forgetting memorized task-specific patterns, but
unlike general forgetting that primarily erases early experiences, restarting targets the erasure of later
experiences. We hope that connections between restarting and forgetting will be further explored in
future discussions.

We anticipate that our work will contribute valuable insights to two different research directions. First,
we hope our work will pave the way to applying various new search strategies, beyond restarting,
into neural network training. It also opens up the possibility of analyzing existing training methods
from a statistical physics perspective.
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A SGD dynamics and Langevin dynamics

In this section, we explain how the dynamics of SGD can be converted to the discretized Langevin
equation. We follow similar procedures as in Refs. [46–48]. As written in the main text, the network
parameters θ are updated by

∆θt = −
η

B

∑
(xi,yi)∈Bt

∇θLi(θt)

= − η

Ntr

∑
(xi,yi)∈Dtr

∇θLi(θt) +

 η

Ntr

∑
(xi,yi)∈Dtr

∇θLi(θt)−
η

B

∑
(xi,yi)∈Bt

∇θLi(θt)


= −∇θRDtr

(θt)η + ξt
√
η,

(S.1)
where the random noise vector ξt ≡

√
η (∇θRDtr(θt)−∇θRBt(θt)) ∈ Rd, ∇θRDtr(θt) is

the gradient of risk on Dtr, and ∇θRBt(θt) is the gradient of risk on a minibatch Bt. Note that
⟨∇θLi(θt)⟩Dtr

= ∇θRDtr
(θt) and ⟨RBt

(θt)⟩Dtr
= RDtr

(θt). Using these facts, we can obtain
that ⟨ξt⟩Dtr

= 0 and

⟨ξtξTs ⟩Dtr
= η

〈
(∇θRDtr

(θt)−∇θRBt
(θt)) (∇θRDtr

(θs)−∇θRBs
(θs))

T
〉
Dtr

= η
(〈

∇θRBt(θt)∇θRBs(θs)
T
〉
Dtr
−∇θRDtr(θt)∇θRDtr(θs)

T
)
.

(S.2)

For the s ̸= t case,
〈
∇θRBt

(θt)∇θRBs
(θs)

T
〉
Dtr

= ∇θRDtr
(θt)∇θRDtr

(θs)
T because

each minibatch is independently sampled from Dtr. Applying ⟨∇θLi(θt)∇θLj(θt)⟩Dtr
=

∥∇θRDtr
(θt)∥2 + Σ(θt)δij with the covariance matrix Σ(θt), where ∥ · ∥ denotes the Euclidean

norm of a vector, we have〈
∥∇θRBt(θt)∥2

〉
Dtr

= ∥∇θRDtr(θt)∥2 +
1

B
Σ(θt). (S.3)

Therefore, we obtain ⟨ξtξTs ⟩Dtr
= 2D(θt)δts with D(θt) = ηΣ(θt)/(2B). We assumed Ntr ≫ B

in the above derivation, but the decreasing trend of D(θt) with B is still valid for Ntr ≥ B [48].

Let us consider the overdamped Langevin equation, a first-order stochastic differential equation
describing the evolution of a particle where friction dominates over inertia. Applying the Euler
method, the overdamped Langevin equation can be approximated with time interval ∆t by [49]

∆xt = −∇xV (xt)∆t+
√

2B(xt)∆Wt. (S.4)

Here, xt is the position of the particle at time step t, V (xt) is the underlying potential, B(xt) is the
strength of the fluctuations, called the diffusion matrix, and ∆Wt is the random noise vector that
satisfies ⟨∆Wt⟩ = 0 and ⟨∆Wt∆WT

s ⟩ = ∆tδts, where ⟨·⟩ denotes the ensemble average. When
we simulate Eq. (S.4), we randomly sample the random real number ζt from a certain probability
distribution with zero-mean and unit-variance at each iteration t and represent the noise vector as
∆Wt ≡ ζt

√
∆t. Note that ∆Wt is commonly assumed as an increment of the Wiener process based

on the central limit theorem, so that ζt is generally sampled from the standard normal distribution.
This assumption is often violated in various sitautions [74], and ζt can be sampled from other
distributions depending on the system. Comparing Eq. (S.1) with Eq. (S.4), we can easily see that
the dynamics of SGD follows the overdamped Langevin equation, withRDtr

and D serving as the
potential and the diffusion matrix, respectively. Based on this correspondence, we analyze the SGD
dynamics in the language of the Langevin dynamics and introduce the stochastic restarting strategy
in the main text.

B Stochastic restarting in statistical physics

We briefly introduce what stochastic restarting is and the conditions under which this strategy can
help random searches (see Ref. [2] for a more detailed review). In fact, the restarting method has
already been exploited in some stochastic algorithms [75–77], but much attention has been attracted
by the theoretical success of stochastic restarting [1]. Several approaches have been made to deal with
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search processes under restart, such as calculating the survival probability [1, 5]. Here, we present an
easy but general one: we clarify that we follow the same procedure as in Refs. [67, 68, 7].

Let us consider a generic searcher that starts from a restarting point at time zero in a d-dimensional
space, with the assumption that the searcher restarted at a rate γ if the target is not found. In other
words, the search process is completed when the searcher finds the target before restarting; otherwise,
the searcher returns to the restarting point and repeats this procedure until the target is found. This
procedure can be understood in terms of two random variables, T and R, which represent the time
to find a target and the time to restart, respectively. If we draw T and R from their respective
distributions, we check whether T > R. If T > R, the searcher restarts before finding the target, and
the search process begins anew from the restarting point. Conversely, if T < R, the searcher finds
the target before restarting, and the search process is completed. Applying this scheme, the time to
find a target, known as the first passage time (FPT) and denoted by T (γ), can be expressed by the
following renewal equation:

T (γ) =

{
T, if T < R,

R+ T (γ)′, if R ≤ T ,
(S.5)

or equivalently,
T (γ) = min(T,R) + I(R ≤ T )T (γ)′, (S.6)

where T (γ)′ denotes an independent and identically distributed copy of T (γ), and I(R ≤ T ) denotes
an indicator function which equals one if R ≤ T and zero otherwise. Note that T (γ) = T if there is
no restart (γ = 0). Taking expectations in Eq. (S.6), we obtain the mean first passage time (MFPT):

⟨T (γ)⟩ = ⟨min(T,R)⟩
Pr(T < R)

, (S.7)

with the relations ⟨I(R ≤ T )⟩ = Pr(R ≤ T ) and ⟨T (γ)⟩ = ⟨T (γ)′⟩. It is noteworthy that we do not
assume the dynamics of the search process and the function of the restart rate. Thus, Eq. (S.7) can be
applied to a general search process regardless of the distributions of T and R.

As a simple restart method, we assume a constant restart rate, i.e., the restart probability within a time
interval dt is γdt [1]. Then, the distribution of R is exponential with γe−γt at time t and ⟨min(T,R)⟩
can be calculated by

⟨min(T,R)⟩ =
∫ ∞

0

dt [1− Pr(min(T,R) ≤ t)]

=

∫ ∞

0

dt Pr(R > t)Pr(T > t)

=

∫ ∞

0

dt e−rt

∫ ∞

t

dt′fT (t
′) =

1

r
− 1

r

∫ ∞

0

dt e−rtfT (t).

(S.8)

In addition, Pr(T < R) =
∫∞
0

dt fT (t)Pr(R > t) =
∫∞
0

dt e−rtfT (t). Substituting these
equations into Eq. (S.7), we obtain

⟨T (γ)⟩ = 1− T̃ (γ)

γT̃ (γ)
(S.9)

where T̃ (γ) ≡
∫∞
0

dte−γtfT (t) denotes the Laplace transform of T evaluated at γ. Note that
fT (t) is determined by the underlying dynamics of the searcher, which may include factors such as
stochasticity or external drift. Therefore, once the dynamics of a searcher are determined and fT (t)
is known, we can calculate the MFPT at γ and identify whether restarting is beneficial.

To obtain the MFPT with restarting, let us specify the dynamics of a searcher. Consider a searcher
diffusing in one dimension with a diffusion constant D and a constant drift v and assume that the
searcher starts at the origin (restart point) and that the target we want to find is located at L (> 0).
Here, D represents the stochasticity and v represents the drift toward a target. The position x(t) of
the searcher at time t evolves during a small time interval ∆t through the Langevin equation given by

x(t+∆t) =

{
xr, with probability γ∆t,

x(t) + v∆t+ ξ(t)
√
∆t, otherwise

(S.10)
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Figure S.1: The mean first passage time (MFPT) ⟨T (γ)⟩ with varying (a) the diffusion constant D
and (b) the drift v with respec to the restart rate γ [see Eq. (S.13)]. Markers represent the minimum
MFPT, ⟨T (γ∗)⟩. We set v = 1 in (a), D = 1 in (b), and L = 1 in both.

where xr denotes the restart point set as the origin and ξ(t) denotes a stochastic force, typically
modeled Gaussian white noise satisfying ⟨ξ(t)⟩ = 0 and ⟨ξ(t)ξ(s)⟩ = 2Dδ(t − s). In this search
process, the probability distribution to find the searcher at position x at time t is known to be given
by [49]

G0(x, t) =
1√
4πDt

[
e−

(x−vt)2

4Dt − e
Lv
D e−

(x−2L−vt)2

4Dt

]
. (S.11)

The FPT distribution fT (t) is then derived from the probability that the searcher has not yet reached
the target by time t: fT (t) = d

dtPr(T ≥ t) = d
dt

∫ L

−∞ dxG0(x, t). Using this equation and the

definition of T̃ (γ), we find T̃ (γ) = 1− γ
∫ L

−∞ dx G̃0(x, γ) where G̃0(x, γ) ≡
∫∞
0

dte−γtG0(x, t)

is the Laplace transform of G0(x, t) evaluated at γ. Thus, upon calculation with these equations and
Eq. (S.11), we obtain

T̃ (γ) = e
L
2D

(
v−
√

v2+4Dγ
)
. (S.12)

Substituting Eq. (S.12) into Eq. (S.9), we finally have

⟨T (γ)⟩ = 1

γ

[
e

L
2D

(√
v2+4Dγ−v

)
− 1

]
. (S.13)

This final expression gives the MFPT for a searcher with drift and diffusion, including the effect of
restarting at a rate γ.

Examining Eq. (S.13) provides several insights into stochastic restarting. When v ≤ 0 (i.e., the drift
is zero or acts in the opposite direction to the target), ⟨T (γ)⟩ is infinite in the limit γ → 0 but becomes
finite for any finite γ. Conversely, when v > 0 (i.e., the drift is towards the target), ⟨T (γ)⟩ decreases
with increasing γ if Pe ≡ Lv/(2D) ≤ 1. Here, Pe is the Péclet number, which represents the ratio
between drift and diffusive transport rates, and the beneficial condition (Pe ≤ 1) can be identified by
verifying where [d⟨T (γ)⟩/dγ]|γ→0 < 0. Figure S.1 shows how the curve of ⟨T (γ)⟩ changes with
varying Pe: the monotonically increasing curve gradually transforms into a U-shaped curve as Pe
decreases and has a minimum ⟨T (γ)⟩ at the optimal restart rate γ∗ > 0. These results indicate that
restarting can be beneficial for target search when the stochasticity (D) is sufficiently larger than
the drift toward a target (v), as we provided the statement highlighted in Sec. 3.2. Furthermore, we
note that the optimal restart rate γ∗ and the ratio ⟨T (0)⟩/⟨T (γ∗)⟩ increase as Pe decreases [Fig. S.1],
implying that the benefits of restarting increase as D increases and v decreases.

In our paper, we exploit the correspondence between SGD dynamics and Langevin dynamics, as
described in Sec. A, and theoretically identify where stochasticity is strengthened and drift toward a
target is weakened in DNN training. Although we showcased a simple one-dimensional case in this
section, many studies have explored more complex scenarios including high-dimensional spaces [3],
various confining potentials [78, 7], etc [2]. We believe that these studies support the possibility
that restarting may provide advantages in the search process of SGD dynamics. Additionally, we
acknowledge that the advantages of restarting in terms of MFPT are not directly connected to
performance improvements in DNN training. We conjecture and empirically validate that similar
beneficial mechanisms successfully operate in DNN training. However, it would be necessary
and intriguing to find an alternative metric to represent the DNN performance and to theoretically
investigate the effect of restarting.
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C Description of the experiments

This section provides details on the experiments not included in the main text. For all of the
experiments, we perform 5 independent runs to achieve the average and the standard error values.
All runs were made independently on a single NVIDIA TITAN V GPU. All results are obtained
from the model at the optimal iteration based on minimum validation loss as default. Additionally,
the resulting test accuracy is evaluated on the clean validation set. The objective throughout our
experiments is to compare the performance with and without restarting, not to achieve state-of-the-art
performances, we did not heavily tune the hyper-parameters for each of the settings. Here, we provide
a choice of the hyper-parameters for our experiments.

C.1 Network architecture

We employed a vanilla CNN (VCNN) as mentioned in Sec. 4.1, 4.2, and 4.3, to expedite a straight-
forward testing of our claims. It consists of simple layers, as outlined in Table S.1. In the table, the
inclusion of batch normalization before the activation function and after a layer is indicated by the
term "Use BatchNorm". The output dimension of a convolutional layer is represented as (C,W,H),
where C denotes the number of channels, and W and H represent the width and height, respectively.

Table S.1: Network architecture of the VCNN: Layer name, output dimension of the layer, parameters
of the convolutional layer (K,P, S), and activation function. Here, K, P , and S represent the size of
the filter, padding, and stride, respectively.

VCNN architecture
Layer name Output dim (K,P, S) Use BatchNorm Activation function
Input image (3, 32, 32) None X None

Conv2d (32, 32, 32) (3, 1, 1) O ReLU
Conv2d (64, 32, 32) (3, 1, 1) O ReLU

MaxPool2d (64, 16, 16) (2, 0, 2) O None
Conv2d (128, 16, 16) (3, 1, 1) O ReLU
Conv2d (128, 16, 16) (3, 1, 1) O ReLU

MaxPool2d (128, 8, 8) (2, 0, 2) X None
Conv2d (256, 8, 8) (3, 1, 1) O ReLU
Conv2d (256, 8, 8) (3, 1, 1) O ReLU

MaxPool2d (256, 4, 4) (2, 0, 2) X None
Dropout (p = 0.2) 256× 4× 4 None X None

Linear 1024 None O ReLU
Linear 512 None O ReLU
Linear c None X None

C.2 Experimental setting for results on benchmark datasets in Sec. 4.4

We set the hyper-parameters q = 0.7 and k = 0 for the GCE method [61]; we set α = 0.1, β = 1.0
on CIFAR-10 and α = 6.0, β = 0.1 on CIFAR-100 for the SCE method [62]; and we set λ = 3,
β = 0.7 on CIFAR-10 and λ = 7, β = 0.9 on CIFAR-100 for the ELR method [27]. We set the
batch size as 256, and weight decay as 5× 10−4 for the cross-entropy loss, MAE, GCE, and the SCE
method. For the ELR method, we set the batch size as 128, and weight decay as 10−3 as indicated in
Ref. [27]. We employ a cosine annealing scheduler [79], setting the maximum number of iterations
to the total iteration 5× 104 with an initial learning rate of 0.1 for the cross-entropy loss and 0.01 for
MAE [60], GCE, and the SCE method. For the ELR method, we set the initial learning rate as 0.02,
and reduce it by 1/100 after 17000 and 34000 iterations while keeping the total iteration to 5× 104.
In addition, for the ELR method, we set the restart checkpoint and select the best model based on
validation accuracy instead of validation loss due to the discrepancy in the resulting test accuracies
between these accuracy-based and loss-based approaches in the baseline.
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D Additional results

D.1 Cosine similiaries between drifts in Sec. 3

We provide the cosine similarities between drift components, i.e., −∇θRD̃tr
(θ) (total drift),

−∇θR̂D̃c
tr
(θ) (drift from the correct part), and −∇θR̂D̃w

tr
(θ) (drift from the wrong part) with

varying the noise rate in Fig. S.2. Here, we can see that the cosine similarity between −∇θR̂D̃c
tr
(θt)

and −∇θR̂D̃w
tr
(θt), denoted by cosϕcw, is almost zero, indicating that −∇θR̂D̃c

tr
(θt) and

−∇θR̂D̃w
tr
(θt) are most likely to be orthogonal to each other due to the high-dimensionality of the

network parameters. In addition, the cosine similarity between −∇θRD̃tr
(θt) and −∇θR̂D̃c

tr
(θt),

denoted by cosϕtc, decreases with increasing τ , implying that−∇θRD̃tr
(θt) becomes less correlated

with −∇θR̂D̃c
tr
(θt). These results support our claims in Sec. 3 and the schematic in Fig. 2(a).

b ca

Figure S.2: Cosine similarities between −∇θRD̃tr
(θ) (total drift), −∇θR̂D̃c

tr
(θ) (drift from the

correct part, i.e., correct drift), and −∇θR̂D̃w
tr
(θ) (drift from the wrong part, i.e., wrong drift) with

(a) the noise rate τ = 0.2, (b) τ = 0.4, and (c) τ = 0.6. Here, cosϕtc, cosϕtw, and cosϕcw denote
the cosine similarity between total and correct drifts, total and correct drifts, and total and correct
drifts, respectively. We set B = 8 in setting 1.
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D.2 Unnormalized plots in Sec. 4.1, 4.2, and 4.3

In order to facilitate comparison between the restarting method and the original SGD, we normalized
the validation loss and test accuracy values in the main text by calculating the relative difference in the
metrics (RDVLoss and RDVAcc.). Here, we provide the unnormalized (i.e., original) validation loss
and test accuracy values: Figs. S.3, S.4, and S.5 in the Supplementary Materials are the unnormalized
results of Figs. 3, 4, and 5 in the main text, respectively.

ba

c

Figure S.3: (a) Validation loss and (b) test accuracy results with varying the checkpoint to restart with
respect to the restart probability r. Based on the checkpoint at the overfitting iteration tm, the results
are obtained in earlier iterations (left) and later iterations than tm (right). Here, tm + δt denotes the
iteration where the checkpoint is selected. (c) Validation loss (left) and test accuracy (right) with the
perturbed checkpoint parameters θc,ϵ. Here, θc,ϵ ≡ θc + ϵn̂ where θc denotes the checkpoint and n̂
denotes a random unit vector. The shaded areas denote the standard error.

ba

Figure S.4: Validation loss and test accuracy results with (a) varying the batch size B, and (b) varying
the noise rate τ with respect to the restart probability r. We set τ = 0.4 in (a) and B = 16 in (b).
The shaded areas denote the standard error.
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Figure S.5: Validation loss and test accuracy results with varying one section of the network to restart
with respect to the restart probability r. Here, we set τ = 0.4 and B = 16. The shaded areas denote
the standard error.

D.3 Validation loss results in Sec. 4.4

Table S.2 presents the validation loss results from the corresponding models used in Table 1 in the
main text. Similar to the test accuracy results in Table 1, Table S.2 shows that our restarting method
consistently achieves either at least equivalent or higher validation losses compared to the baseline
approach involving no restarting.

Table S.2: Validation losses with different methods. We compare the performance without restarting
(No) and with restarting (Restart) at r = 0.001. Results are presented as the average and the standard
deviation. The best results are indicated in bold with statistical significance.

Dataset Method Noise rate 0.2 Noise rate 0.4 Noise rate 0.6
No Restart No Restart No Restart

CIFAR-10

CE 1.231± 0.018 1.164± 0.015∗∗∗ 1.774± 0.010 1.734± 0.018∗∗ 2.124± 0.009 2.102± 0.012∗∗

PartRestart — 1.184± 0.012∗∗ — 1.748± 0.014∗ — 2.114± 0.011
MAE 0.545± 0.009 0.545± 0.009 0.968± 0.039 0.963± 0.039 1.422± 0.042 1.420± 0.042
GCE 0.388± 0.008 0.383± 0.009 0.686± 0.007 0.673± 0.007∗ 0.957± 0.009 0.945± 0.011
SCE 2.720± 0.047 2.707± 0.041 4.759± 0.045 4.702± 0.055 6.617± 0.059 6.558± 0.069
ELR 1.191± 0.012 1.194± 0.009 1.790± 0.017 1.791± 0.016 2.147± 0.015 2.142± 0.015

CIFAR-100

CE 2.759± 0.053 2.583± 0.051∗∗∗ 3.675± 0.064 3.540± 0.074∗ 4.283± 0.023 4.201± 0.026∗∗∗

PartRestart — 2.564± 0.047∗∗∗ — 3.549± 0.067∗ — 4.206± 0.019∗∗∗

MAE 1.690± 0.039 1.690± 0.039 1.864± 0.044 1.864± 0.045 1.932± 0.010 1.931± 0.010
GCE 0.644± 0.007 0.636± 0.008 0.896± 0.007 0.883± 0.006∗ 1.129± 0.004 1.116± 0.006∗∗

SCE 17.575± 0.341 16.768± 0.405∗∗ 23.129± 0.108 22.556± 0.090∗∗∗ 26.840± 0.106 26.609± 0.140∗

ELR 2.802± 0.049 2.709± 0.159 3.901± 0.062 3.580± 0.160∗∗ 4.503± 0.030 4.450± 0.141
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